@inproceedings{paetzold-2018-utfpr,
title = "{UTFPR} at {IEST} 2018: Exploring Character-to-Word Composition for Emotion Analysis",
author = "Paetzold, Gustavo",
editor = "Balahur, Alexandra and
Mohammad, Saif M. and
Hoste, Veronique and
Klinger, Roman",
booktitle = "Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis",
month = oct,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-6224/",
doi = "10.18653/v1/W18-6224",
pages = "176--181",
abstract = "We introduce the UTFPR system for the Implicit Emotions Shared Task of 2018: A compositional character-to-word recurrent neural network that does not exploit heavy and/or hard-to-obtain resources. We find that our approach can outperform multiple baselines, and offers an elegant and effective solution to the problem of orthographic variance in tweets."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="paetzold-2018-utfpr">
<titleInfo>
<title>UTFPR at IEST 2018: Exploring Character-to-Word Composition for Emotion Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gustavo</namePart>
<namePart type="family">Paetzold</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexandra</namePart>
<namePart type="family">Balahur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Klinger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We introduce the UTFPR system for the Implicit Emotions Shared Task of 2018: A compositional character-to-word recurrent neural network that does not exploit heavy and/or hard-to-obtain resources. We find that our approach can outperform multiple baselines, and offers an elegant and effective solution to the problem of orthographic variance in tweets.</abstract>
<identifier type="citekey">paetzold-2018-utfpr</identifier>
<identifier type="doi">10.18653/v1/W18-6224</identifier>
<location>
<url>https://aclanthology.org/W18-6224/</url>
</location>
<part>
<date>2018-10</date>
<extent unit="page">
<start>176</start>
<end>181</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T UTFPR at IEST 2018: Exploring Character-to-Word Composition for Emotion Analysis
%A Paetzold, Gustavo
%Y Balahur, Alexandra
%Y Mohammad, Saif M.
%Y Hoste, Veronique
%Y Klinger, Roman
%S Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis
%D 2018
%8 October
%I Association for Computational Linguistics
%C Brussels, Belgium
%F paetzold-2018-utfpr
%X We introduce the UTFPR system for the Implicit Emotions Shared Task of 2018: A compositional character-to-word recurrent neural network that does not exploit heavy and/or hard-to-obtain resources. We find that our approach can outperform multiple baselines, and offers an elegant and effective solution to the problem of orthographic variance in tweets.
%R 10.18653/v1/W18-6224
%U https://aclanthology.org/W18-6224/
%U https://doi.org/10.18653/v1/W18-6224
%P 176-181
Markdown (Informal)
[UTFPR at IEST 2018: Exploring Character-to-Word Composition for Emotion Analysis](https://aclanthology.org/W18-6224/) (Paetzold, WASSA 2018)
ACL