@inproceedings{liu-2018-emonlp-iest,
title = "{E}mo{NLP} at {IEST} 2018: An Ensemble of Deep Learning Models and Gradient Boosting Regression Tree for Implicit Emotion Prediction in Tweets",
author = "Liu, Man",
editor = "Balahur, Alexandra and
Mohammad, Saif M. and
Hoste, Veronique and
Klinger, Roman",
booktitle = "Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis",
month = oct,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-6228",
doi = "10.18653/v1/W18-6228",
pages = "201--204",
abstract = "This paper describes our system submitted to IEST 2018, a shared task (Klinger et al., 2018) to predict the emotion types. Six emotion types are involved: anger, joy, fear, surprise, disgust and sad. We perform three different approaches: feed forward neural network (FFNN), convolutional BLSTM (ConBLSTM) and Gradient Boosting Regression Tree Method (GBM). Word embeddings used in convolutional BLSTM are pre-trained on 470 million tweets which are filtered using the emotional words and emojis. In addition, broad sets of features (i.e. syntactic features, lexicon features, cluster features) are adopted to train GBM and FFNN. The three approaches are finally ensembled by the weighted average of predicted probabilities of each emotion label.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-2018-emonlp-iest">
<titleInfo>
<title>EmoNLP at IEST 2018: An Ensemble of Deep Learning Models and Gradient Boosting Regression Tree for Implicit Emotion Prediction in Tweets</title>
</titleInfo>
<name type="personal">
<namePart type="given">Man</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexandra</namePart>
<namePart type="family">Balahur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Klinger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our system submitted to IEST 2018, a shared task (Klinger et al., 2018) to predict the emotion types. Six emotion types are involved: anger, joy, fear, surprise, disgust and sad. We perform three different approaches: feed forward neural network (FFNN), convolutional BLSTM (ConBLSTM) and Gradient Boosting Regression Tree Method (GBM). Word embeddings used in convolutional BLSTM are pre-trained on 470 million tweets which are filtered using the emotional words and emojis. In addition, broad sets of features (i.e. syntactic features, lexicon features, cluster features) are adopted to train GBM and FFNN. The three approaches are finally ensembled by the weighted average of predicted probabilities of each emotion label.</abstract>
<identifier type="citekey">liu-2018-emonlp-iest</identifier>
<identifier type="doi">10.18653/v1/W18-6228</identifier>
<location>
<url>https://aclanthology.org/W18-6228</url>
</location>
<part>
<date>2018-10</date>
<extent unit="page">
<start>201</start>
<end>204</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T EmoNLP at IEST 2018: An Ensemble of Deep Learning Models and Gradient Boosting Regression Tree for Implicit Emotion Prediction in Tweets
%A Liu, Man
%Y Balahur, Alexandra
%Y Mohammad, Saif M.
%Y Hoste, Veronique
%Y Klinger, Roman
%S Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis
%D 2018
%8 October
%I Association for Computational Linguistics
%C Brussels, Belgium
%F liu-2018-emonlp-iest
%X This paper describes our system submitted to IEST 2018, a shared task (Klinger et al., 2018) to predict the emotion types. Six emotion types are involved: anger, joy, fear, surprise, disgust and sad. We perform three different approaches: feed forward neural network (FFNN), convolutional BLSTM (ConBLSTM) and Gradient Boosting Regression Tree Method (GBM). Word embeddings used in convolutional BLSTM are pre-trained on 470 million tweets which are filtered using the emotional words and emojis. In addition, broad sets of features (i.e. syntactic features, lexicon features, cluster features) are adopted to train GBM and FFNN. The three approaches are finally ensembled by the weighted average of predicted probabilities of each emotion label.
%R 10.18653/v1/W18-6228
%U https://aclanthology.org/W18-6228
%U https://doi.org/10.18653/v1/W18-6228
%P 201-204
Markdown (Informal)
[EmoNLP at IEST 2018: An Ensemble of Deep Learning Models and Gradient Boosting Regression Tree for Implicit Emotion Prediction in Tweets](https://aclanthology.org/W18-6228) (Liu, WASSA 2018)
ACL