@inproceedings{priban-martinek-2018-uwb,
title = "{UWB} at {IEST} 2018: Emotion Prediction in Tweets with Bidirectional Long Short-Term Memory Neural Network",
author = "P{\v{r}}ib{\'a}{\v{n}}, Pavel and
Mart{\'\i}nek, Ji{\v{r}}{\'\i}",
editor = "Balahur, Alexandra and
Mohammad, Saif M. and
Hoste, Veronique and
Klinger, Roman",
booktitle = "Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis",
month = oct,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-6232",
doi = "10.18653/v1/W18-6232",
pages = "224--230",
abstract = "This paper describes our system created for the WASSA 2018 Implicit Emotion Shared Task. The goal of this task is to predict the emotion of a given tweet, from which a certain emotion word is removed. The removed word can be \textit{sad}, \textit{happy}, \textit{disgusted}, \textit{angry}, \textit{afraid} or a synonym of one of them. Our proposed system is based on deep-learning methods. We use Bidirectional Long Short-Term Memory (BiLSTM) with word embeddings as an input. Pre-trained DeepMoji model and pre-trained emoji2vec emoji embeddings are also used as additional inputs. Our System achieves 0.657 macro F1 score and our rank is 13th out of 30.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="priban-martinek-2018-uwb">
<titleInfo>
<title>UWB at IEST 2018: Emotion Prediction in Tweets with Bidirectional Long Short-Term Memory Neural Network</title>
</titleInfo>
<name type="personal">
<namePart type="given">Pavel</namePart>
<namePart type="family">Přibáň</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiří</namePart>
<namePart type="family">Martínek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexandra</namePart>
<namePart type="family">Balahur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Klinger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our system created for the WASSA 2018 Implicit Emotion Shared Task. The goal of this task is to predict the emotion of a given tweet, from which a certain emotion word is removed. The removed word can be sad, happy, disgusted, angry, afraid or a synonym of one of them. Our proposed system is based on deep-learning methods. We use Bidirectional Long Short-Term Memory (BiLSTM) with word embeddings as an input. Pre-trained DeepMoji model and pre-trained emoji2vec emoji embeddings are also used as additional inputs. Our System achieves 0.657 macro F1 score and our rank is 13th out of 30.</abstract>
<identifier type="citekey">priban-martinek-2018-uwb</identifier>
<identifier type="doi">10.18653/v1/W18-6232</identifier>
<location>
<url>https://aclanthology.org/W18-6232</url>
</location>
<part>
<date>2018-10</date>
<extent unit="page">
<start>224</start>
<end>230</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T UWB at IEST 2018: Emotion Prediction in Tweets with Bidirectional Long Short-Term Memory Neural Network
%A Přibáň, Pavel
%A Martínek, Jiří
%Y Balahur, Alexandra
%Y Mohammad, Saif M.
%Y Hoste, Veronique
%Y Klinger, Roman
%S Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis
%D 2018
%8 October
%I Association for Computational Linguistics
%C Brussels, Belgium
%F priban-martinek-2018-uwb
%X This paper describes our system created for the WASSA 2018 Implicit Emotion Shared Task. The goal of this task is to predict the emotion of a given tweet, from which a certain emotion word is removed. The removed word can be sad, happy, disgusted, angry, afraid or a synonym of one of them. Our proposed system is based on deep-learning methods. We use Bidirectional Long Short-Term Memory (BiLSTM) with word embeddings as an input. Pre-trained DeepMoji model and pre-trained emoji2vec emoji embeddings are also used as additional inputs. Our System achieves 0.657 macro F1 score and our rank is 13th out of 30.
%R 10.18653/v1/W18-6232
%U https://aclanthology.org/W18-6232
%U https://doi.org/10.18653/v1/W18-6232
%P 224-230
Markdown (Informal)
[UWB at IEST 2018: Emotion Prediction in Tweets with Bidirectional Long Short-Term Memory Neural Network](https://aclanthology.org/W18-6232) (Přibáň & Martínek, WASSA 2018)
ACL