@inproceedings{proisl-etal-2018-emotiklue,
title = "{E}moti{KLUE} at {IEST} 2018: Topic-Informed Classification of Implicit Emotions",
author = "Proisl, Thomas and
Heinrich, Philipp and
Kabashi, Besim and
Evert, Stefan",
editor = "Balahur, Alexandra and
Mohammad, Saif M. and
Hoste, Veronique and
Klinger, Roman",
booktitle = "Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis",
month = oct,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-6234/",
doi = "10.18653/v1/W18-6234",
pages = "235--242",
abstract = "EmotiKLUE is a submission to the Implicit Emotion Shared Task. It is a deep learning system that combines independent representations of the left and right contexts of the emotion word with the topic distribution of an LDA topic model. EmotiKLUE achieves a macro average \textit{F₁}score of 67.13{\%}, significantly outperforming the baseline produced by a simple ML classifier. Further enhancements after the evaluation period lead to an improved \textit{F₁}score of 68.10{\%}."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="proisl-etal-2018-emotiklue">
<titleInfo>
<title>EmotiKLUE at IEST 2018: Topic-Informed Classification of Implicit Emotions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Thomas</namePart>
<namePart type="family">Proisl</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Heinrich</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Besim</namePart>
<namePart type="family">Kabashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefan</namePart>
<namePart type="family">Evert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexandra</namePart>
<namePart type="family">Balahur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Klinger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>EmotiKLUE is a submission to the Implicit Emotion Shared Task. It is a deep learning system that combines independent representations of the left and right contexts of the emotion word with the topic distribution of an LDA topic model. EmotiKLUE achieves a macro average F₁score of 67.13%, significantly outperforming the baseline produced by a simple ML classifier. Further enhancements after the evaluation period lead to an improved F₁score of 68.10%.</abstract>
<identifier type="citekey">proisl-etal-2018-emotiklue</identifier>
<identifier type="doi">10.18653/v1/W18-6234</identifier>
<location>
<url>https://aclanthology.org/W18-6234/</url>
</location>
<part>
<date>2018-10</date>
<extent unit="page">
<start>235</start>
<end>242</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T EmotiKLUE at IEST 2018: Topic-Informed Classification of Implicit Emotions
%A Proisl, Thomas
%A Heinrich, Philipp
%A Kabashi, Besim
%A Evert, Stefan
%Y Balahur, Alexandra
%Y Mohammad, Saif M.
%Y Hoste, Veronique
%Y Klinger, Roman
%S Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis
%D 2018
%8 October
%I Association for Computational Linguistics
%C Brussels, Belgium
%F proisl-etal-2018-emotiklue
%X EmotiKLUE is a submission to the Implicit Emotion Shared Task. It is a deep learning system that combines independent representations of the left and right contexts of the emotion word with the topic distribution of an LDA topic model. EmotiKLUE achieves a macro average F₁score of 67.13%, significantly outperforming the baseline produced by a simple ML classifier. Further enhancements after the evaluation period lead to an improved F₁score of 68.10%.
%R 10.18653/v1/W18-6234
%U https://aclanthology.org/W18-6234/
%U https://doi.org/10.18653/v1/W18-6234
%P 235-242
Markdown (Informal)
[EmotiKLUE at IEST 2018: Topic-Informed Classification of Implicit Emotions](https://aclanthology.org/W18-6234/) (Proisl et al., WASSA 2018)
ACL