@inproceedings{salaka-etal-2018-fast,
    title = "Fast Approach to Build an Automatic Sentiment Annotator for Legal Domain using Transfer Learning",
    author = "Salaka, Viraj  and
      Warushavithana, Menuka  and
      de Silva, Nisansa  and
      Perera, Amal Shehan  and
      Ratnayaka, Gathika  and
      Rupasinghe, Thejan",
    editor = "Balahur, Alexandra  and
      Mohammad, Saif M.  and
      Hoste, Veronique  and
      Klinger, Roman",
    booktitle = "Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis",
    month = oct,
    year = "2018",
    address = "Brussels, Belgium",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W18-6238/",
    doi = "10.18653/v1/W18-6238",
    pages = "260--265",
    abstract = "This study proposes a novel way of identifying the sentiment of the phrases used in the legal domain. The added complexity of the language used in law, and the inability of the existing systems to accurately predict the sentiments of words in law are the main motivations behind this study. This is a transfer learning approach which can be used for other domain adaptation tasks as well. The proposed methodology achieves an improvement of over 6{\%} compared to the source model{'}s accuracy in the legal domain."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="salaka-etal-2018-fast">
    <titleInfo>
        <title>Fast Approach to Build an Automatic Sentiment Annotator for Legal Domain using Transfer Learning</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Viraj</namePart>
        <namePart type="family">Salaka</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Menuka</namePart>
        <namePart type="family">Warushavithana</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Nisansa</namePart>
        <namePart type="family">de Silva</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Amal</namePart>
        <namePart type="given">Shehan</namePart>
        <namePart type="family">Perera</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Gathika</namePart>
        <namePart type="family">Ratnayaka</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Thejan</namePart>
        <namePart type="family">Rupasinghe</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-10</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Alexandra</namePart>
            <namePart type="family">Balahur</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Saif</namePart>
            <namePart type="given">M</namePart>
            <namePart type="family">Mohammad</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Veronique</namePart>
            <namePart type="family">Hoste</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Roman</namePart>
            <namePart type="family">Klinger</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Brussels, Belgium</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>This study proposes a novel way of identifying the sentiment of the phrases used in the legal domain. The added complexity of the language used in law, and the inability of the existing systems to accurately predict the sentiments of words in law are the main motivations behind this study. This is a transfer learning approach which can be used for other domain adaptation tasks as well. The proposed methodology achieves an improvement of over 6% compared to the source model’s accuracy in the legal domain.</abstract>
    <identifier type="citekey">salaka-etal-2018-fast</identifier>
    <identifier type="doi">10.18653/v1/W18-6238</identifier>
    <location>
        <url>https://aclanthology.org/W18-6238/</url>
    </location>
    <part>
        <date>2018-10</date>
        <extent unit="page">
            <start>260</start>
            <end>265</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Fast Approach to Build an Automatic Sentiment Annotator for Legal Domain using Transfer Learning
%A Salaka, Viraj
%A Warushavithana, Menuka
%A de Silva, Nisansa
%A Perera, Amal Shehan
%A Ratnayaka, Gathika
%A Rupasinghe, Thejan
%Y Balahur, Alexandra
%Y Mohammad, Saif M.
%Y Hoste, Veronique
%Y Klinger, Roman
%S Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis
%D 2018
%8 October
%I Association for Computational Linguistics
%C Brussels, Belgium
%F salaka-etal-2018-fast
%X This study proposes a novel way of identifying the sentiment of the phrases used in the legal domain. The added complexity of the language used in law, and the inability of the existing systems to accurately predict the sentiments of words in law are the main motivations behind this study. This is a transfer learning approach which can be used for other domain adaptation tasks as well. The proposed methodology achieves an improvement of over 6% compared to the source model’s accuracy in the legal domain.
%R 10.18653/v1/W18-6238
%U https://aclanthology.org/W18-6238/
%U https://doi.org/10.18653/v1/W18-6238
%P 260-265
Markdown (Informal)
[Fast Approach to Build an Automatic Sentiment Annotator for Legal Domain using Transfer Learning](https://aclanthology.org/W18-6238/) (Salaka et al., WASSA 2018)
ACL