@inproceedings{rethmeier-etal-2018-learning,
    title = "Learning Comment Controversy Prediction in Web Discussions Using Incidentally Supervised Multi-Task {CNN}s",
    author = {Rethmeier, Nils  and
      H{\"u}bner, Marc  and
      Hennig, Leonhard},
    editor = "Balahur, Alexandra  and
      Mohammad, Saif M.  and
      Hoste, Veronique  and
      Klinger, Roman",
    booktitle = "Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis",
    month = oct,
    year = "2018",
    address = "Brussels, Belgium",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W18-6246/",
    doi = "10.18653/v1/W18-6246",
    pages = "316--321",
    abstract = "Comments on web news contain controversies that manifest as inter-group agreement-conflicts. Tracking such \textit{rapidly evolving controversy} could ease conflict resolution or journalist-user interaction. However, this presupposes controversy online-prediction that scales to diverse domains using incidental supervision signals instead of manual labeling. To more deeply interpret comment-controversy model decisions we frame prediction as binary classification and evaluate baselines and multi-task CNNs that use an auxiliary news-genre-encoder. Finally, we use ablation and interpretability methods to determine the impacts of topic, discourse and sentiment indicators, contextual vs. global word influence, as well as genre-keywords vs. per-genre-controversy keywords {--} to find that the models learn plausible controversy features using only incidentally supervised signals."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rethmeier-etal-2018-learning">
    <titleInfo>
        <title>Learning Comment Controversy Prediction in Web Discussions Using Incidentally Supervised Multi-Task CNNs</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Nils</namePart>
        <namePart type="family">Rethmeier</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Marc</namePart>
        <namePart type="family">Hübner</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Leonhard</namePart>
        <namePart type="family">Hennig</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-10</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Alexandra</namePart>
            <namePart type="family">Balahur</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Saif</namePart>
            <namePart type="given">M</namePart>
            <namePart type="family">Mohammad</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Veronique</namePart>
            <namePart type="family">Hoste</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Roman</namePart>
            <namePart type="family">Klinger</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Brussels, Belgium</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Comments on web news contain controversies that manifest as inter-group agreement-conflicts. Tracking such rapidly evolving controversy could ease conflict resolution or journalist-user interaction. However, this presupposes controversy online-prediction that scales to diverse domains using incidental supervision signals instead of manual labeling. To more deeply interpret comment-controversy model decisions we frame prediction as binary classification and evaluate baselines and multi-task CNNs that use an auxiliary news-genre-encoder. Finally, we use ablation and interpretability methods to determine the impacts of topic, discourse and sentiment indicators, contextual vs. global word influence, as well as genre-keywords vs. per-genre-controversy keywords – to find that the models learn plausible controversy features using only incidentally supervised signals.</abstract>
    <identifier type="citekey">rethmeier-etal-2018-learning</identifier>
    <identifier type="doi">10.18653/v1/W18-6246</identifier>
    <location>
        <url>https://aclanthology.org/W18-6246/</url>
    </location>
    <part>
        <date>2018-10</date>
        <extent unit="page">
            <start>316</start>
            <end>321</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning Comment Controversy Prediction in Web Discussions Using Incidentally Supervised Multi-Task CNNs
%A Rethmeier, Nils
%A Hübner, Marc
%A Hennig, Leonhard
%Y Balahur, Alexandra
%Y Mohammad, Saif M.
%Y Hoste, Veronique
%Y Klinger, Roman
%S Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis
%D 2018
%8 October
%I Association for Computational Linguistics
%C Brussels, Belgium
%F rethmeier-etal-2018-learning
%X Comments on web news contain controversies that manifest as inter-group agreement-conflicts. Tracking such rapidly evolving controversy could ease conflict resolution or journalist-user interaction. However, this presupposes controversy online-prediction that scales to diverse domains using incidental supervision signals instead of manual labeling. To more deeply interpret comment-controversy model decisions we frame prediction as binary classification and evaluate baselines and multi-task CNNs that use an auxiliary news-genre-encoder. Finally, we use ablation and interpretability methods to determine the impacts of topic, discourse and sentiment indicators, contextual vs. global word influence, as well as genre-keywords vs. per-genre-controversy keywords – to find that the models learn plausible controversy features using only incidentally supervised signals.
%R 10.18653/v1/W18-6246
%U https://aclanthology.org/W18-6246/
%U https://doi.org/10.18653/v1/W18-6246
%P 316-321
Markdown (Informal)
[Learning Comment Controversy Prediction in Web Discussions Using Incidentally Supervised Multi-Task CNNs](https://aclanthology.org/W18-6246/) (Rethmeier et al., WASSA 2018)
ACL