@inproceedings{rethmeier-etal-2018-learning,
title = "Learning Comment Controversy Prediction in Web Discussions Using Incidentally Supervised Multi-Task {CNN}s",
author = {Rethmeier, Nils and
H{\"u}bner, Marc and
Hennig, Leonhard},
editor = "Balahur, Alexandra and
Mohammad, Saif M. and
Hoste, Veronique and
Klinger, Roman",
booktitle = "Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis",
month = oct,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-6246/",
doi = "10.18653/v1/W18-6246",
pages = "316--321",
abstract = "Comments on web news contain controversies that manifest as inter-group agreement-conflicts. Tracking such \textit{rapidly evolving controversy} could ease conflict resolution or journalist-user interaction. However, this presupposes controversy online-prediction that scales to diverse domains using incidental supervision signals instead of manual labeling. To more deeply interpret comment-controversy model decisions we frame prediction as binary classification and evaluate baselines and multi-task CNNs that use an auxiliary news-genre-encoder. Finally, we use ablation and interpretability methods to determine the impacts of topic, discourse and sentiment indicators, contextual vs. global word influence, as well as genre-keywords vs. per-genre-controversy keywords {--} to find that the models learn plausible controversy features using only incidentally supervised signals."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rethmeier-etal-2018-learning">
<titleInfo>
<title>Learning Comment Controversy Prediction in Web Discussions Using Incidentally Supervised Multi-Task CNNs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nils</namePart>
<namePart type="family">Rethmeier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marc</namePart>
<namePart type="family">Hübner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leonhard</namePart>
<namePart type="family">Hennig</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexandra</namePart>
<namePart type="family">Balahur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Klinger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Comments on web news contain controversies that manifest as inter-group agreement-conflicts. Tracking such rapidly evolving controversy could ease conflict resolution or journalist-user interaction. However, this presupposes controversy online-prediction that scales to diverse domains using incidental supervision signals instead of manual labeling. To more deeply interpret comment-controversy model decisions we frame prediction as binary classification and evaluate baselines and multi-task CNNs that use an auxiliary news-genre-encoder. Finally, we use ablation and interpretability methods to determine the impacts of topic, discourse and sentiment indicators, contextual vs. global word influence, as well as genre-keywords vs. per-genre-controversy keywords – to find that the models learn plausible controversy features using only incidentally supervised signals.</abstract>
<identifier type="citekey">rethmeier-etal-2018-learning</identifier>
<identifier type="doi">10.18653/v1/W18-6246</identifier>
<location>
<url>https://aclanthology.org/W18-6246/</url>
</location>
<part>
<date>2018-10</date>
<extent unit="page">
<start>316</start>
<end>321</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning Comment Controversy Prediction in Web Discussions Using Incidentally Supervised Multi-Task CNNs
%A Rethmeier, Nils
%A Hübner, Marc
%A Hennig, Leonhard
%Y Balahur, Alexandra
%Y Mohammad, Saif M.
%Y Hoste, Veronique
%Y Klinger, Roman
%S Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis
%D 2018
%8 October
%I Association for Computational Linguistics
%C Brussels, Belgium
%F rethmeier-etal-2018-learning
%X Comments on web news contain controversies that manifest as inter-group agreement-conflicts. Tracking such rapidly evolving controversy could ease conflict resolution or journalist-user interaction. However, this presupposes controversy online-prediction that scales to diverse domains using incidental supervision signals instead of manual labeling. To more deeply interpret comment-controversy model decisions we frame prediction as binary classification and evaluate baselines and multi-task CNNs that use an auxiliary news-genre-encoder. Finally, we use ablation and interpretability methods to determine the impacts of topic, discourse and sentiment indicators, contextual vs. global word influence, as well as genre-keywords vs. per-genre-controversy keywords – to find that the models learn plausible controversy features using only incidentally supervised signals.
%R 10.18653/v1/W18-6246
%U https://aclanthology.org/W18-6246/
%U https://doi.org/10.18653/v1/W18-6246
%P 316-321
Markdown (Informal)
[Learning Comment Controversy Prediction in Web Discussions Using Incidentally Supervised Multi-Task CNNs](https://aclanthology.org/W18-6246/) (Rethmeier et al., WASSA 2018)
ACL