@inproceedings{muller-etal-2018-large,
title = "A Large-Scale Test Set for the Evaluation of Context-Aware Pronoun Translation in Neural Machine Translation",
author = {M{\"u}ller, Mathias and
Rios, Annette and
Voita, Elena and
Sennrich, Rico},
editor = "Bojar, Ond{\v{r}}ej and
Chatterjee, Rajen and
Federmann, Christian and
Fishel, Mark and
Graham, Yvette and
Haddow, Barry and
Huck, Matthias and
Yepes, Antonio Jimeno and
Koehn, Philipp and
Monz, Christof and
Negri, Matteo and
N{\'e}v{\'e}ol, Aur{\'e}lie and
Neves, Mariana and
Post, Matt and
Specia, Lucia and
Turchi, Marco and
Verspoor, Karin",
booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
month = oct,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-6307/",
doi = "10.18653/v1/W18-6307",
pages = "61--72",
abstract = "The translation of pronouns presents a special challenge to machine translation to this day, since it often requires context outside the current sentence. Recent work on models that have access to information across sentence boundaries has seen only moderate improvements in terms of automatic evaluation metrics such as BLEU. However, metrics that quantify the overall translation quality are ill-equipped to measure gains from additional context. We argue that a different kind of evaluation is needed to assess how well models translate inter-sentential phenomena such as pronouns. This paper therefore presents a test suite of contrastive translations focused specifically on the translation of pronouns. Furthermore, we perform experiments with several context-aware models. We show that, while gains in BLEU are moderate for those systems, they outperform baselines by a large margin in terms of accuracy on our contrastive test set. Our experiments also show the effectiveness of parameter tying for multi-encoder architectures."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="muller-etal-2018-large">
<titleInfo>
<title>A Large-Scale Test Set for the Evaluation of Context-Aware Pronoun Translation in Neural Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mathias</namePart>
<namePart type="family">Müller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Annette</namePart>
<namePart type="family">Rios</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elena</namePart>
<namePart type="family">Voita</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rico</namePart>
<namePart type="family">Sennrich</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third Conference on Machine Translation: Research Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ondřej</namePart>
<namePart type="family">Bojar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rajen</namePart>
<namePart type="family">Chatterjee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Federmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Fishel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yvette</namePart>
<namePart type="family">Graham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barry</namePart>
<namePart type="family">Haddow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthias</namePart>
<namePart type="family">Huck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antonio</namePart>
<namePart type="given">Jimeno</namePart>
<namePart type="family">Yepes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Koehn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christof</namePart>
<namePart type="family">Monz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matteo</namePart>
<namePart type="family">Negri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurélie</namePart>
<namePart type="family">Névéol</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mariana</namePart>
<namePart type="family">Neves</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matt</namePart>
<namePart type="family">Post</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Turchi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Karin</namePart>
<namePart type="family">Verspoor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The translation of pronouns presents a special challenge to machine translation to this day, since it often requires context outside the current sentence. Recent work on models that have access to information across sentence boundaries has seen only moderate improvements in terms of automatic evaluation metrics such as BLEU. However, metrics that quantify the overall translation quality are ill-equipped to measure gains from additional context. We argue that a different kind of evaluation is needed to assess how well models translate inter-sentential phenomena such as pronouns. This paper therefore presents a test suite of contrastive translations focused specifically on the translation of pronouns. Furthermore, we perform experiments with several context-aware models. We show that, while gains in BLEU are moderate for those systems, they outperform baselines by a large margin in terms of accuracy on our contrastive test set. Our experiments also show the effectiveness of parameter tying for multi-encoder architectures.</abstract>
<identifier type="citekey">muller-etal-2018-large</identifier>
<identifier type="doi">10.18653/v1/W18-6307</identifier>
<location>
<url>https://aclanthology.org/W18-6307/</url>
</location>
<part>
<date>2018-10</date>
<extent unit="page">
<start>61</start>
<end>72</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Large-Scale Test Set for the Evaluation of Context-Aware Pronoun Translation in Neural Machine Translation
%A Müller, Mathias
%A Rios, Annette
%A Voita, Elena
%A Sennrich, Rico
%Y Bojar, Ondřej
%Y Chatterjee, Rajen
%Y Federmann, Christian
%Y Fishel, Mark
%Y Graham, Yvette
%Y Haddow, Barry
%Y Huck, Matthias
%Y Yepes, Antonio Jimeno
%Y Koehn, Philipp
%Y Monz, Christof
%Y Negri, Matteo
%Y Névéol, Aurélie
%Y Neves, Mariana
%Y Post, Matt
%Y Specia, Lucia
%Y Turchi, Marco
%Y Verspoor, Karin
%S Proceedings of the Third Conference on Machine Translation: Research Papers
%D 2018
%8 October
%I Association for Computational Linguistics
%C Brussels, Belgium
%F muller-etal-2018-large
%X The translation of pronouns presents a special challenge to machine translation to this day, since it often requires context outside the current sentence. Recent work on models that have access to information across sentence boundaries has seen only moderate improvements in terms of automatic evaluation metrics such as BLEU. However, metrics that quantify the overall translation quality are ill-equipped to measure gains from additional context. We argue that a different kind of evaluation is needed to assess how well models translate inter-sentential phenomena such as pronouns. This paper therefore presents a test suite of contrastive translations focused specifically on the translation of pronouns. Furthermore, we perform experiments with several context-aware models. We show that, while gains in BLEU are moderate for those systems, they outperform baselines by a large margin in terms of accuracy on our contrastive test set. Our experiments also show the effectiveness of parameter tying for multi-encoder architectures.
%R 10.18653/v1/W18-6307
%U https://aclanthology.org/W18-6307/
%U https://doi.org/10.18653/v1/W18-6307
%P 61-72
Markdown (Informal)
[A Large-Scale Test Set for the Evaluation of Context-Aware Pronoun Translation in Neural Machine Translation](https://aclanthology.org/W18-6307/) (Müller et al., WMT 2018)
ACL