@inproceedings{lu-etal-2018-neural,
title = "A neural interlingua for multilingual machine translation",
author = "Lu, Yichao and
Keung, Phillip and
Ladhak, Faisal and
Bhardwaj, Vikas and
Zhang, Shaonan and
Sun, Jason",
booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
month = oct,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-6309",
doi = "10.18653/v1/W18-6309",
pages = "84--92",
abstract = "We incorporate an explicit neural interlingua into a multilingual encoder-decoder neural machine translation (NMT) architecture. We demonstrate that our model learns a language-independent representation by performing direct zero-shot translation (without using pivot translation), and by using the source sentence embeddings to create an English Yelp review classifier that, through the mediation of the neural interlingua, can also classify French and German reviews. Furthermore, we show that, despite using a smaller number of parameters than a pairwise collection of bilingual NMT models, our approach produces comparable BLEU scores for each language pair in WMT15.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lu-etal-2018-neural">
<titleInfo>
<title>A neural interlingua for multilingual machine translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yichao</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phillip</namePart>
<namePart type="family">Keung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Faisal</namePart>
<namePart type="family">Ladhak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vikas</namePart>
<namePart type="family">Bhardwaj</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shaonan</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jason</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third Conference on Machine Translation: Research Papers</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We incorporate an explicit neural interlingua into a multilingual encoder-decoder neural machine translation (NMT) architecture. We demonstrate that our model learns a language-independent representation by performing direct zero-shot translation (without using pivot translation), and by using the source sentence embeddings to create an English Yelp review classifier that, through the mediation of the neural interlingua, can also classify French and German reviews. Furthermore, we show that, despite using a smaller number of parameters than a pairwise collection of bilingual NMT models, our approach produces comparable BLEU scores for each language pair in WMT15.</abstract>
<identifier type="citekey">lu-etal-2018-neural</identifier>
<identifier type="doi">10.18653/v1/W18-6309</identifier>
<location>
<url>https://aclanthology.org/W18-6309</url>
</location>
<part>
<date>2018-10</date>
<extent unit="page">
<start>84</start>
<end>92</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A neural interlingua for multilingual machine translation
%A Lu, Yichao
%A Keung, Phillip
%A Ladhak, Faisal
%A Bhardwaj, Vikas
%A Zhang, Shaonan
%A Sun, Jason
%S Proceedings of the Third Conference on Machine Translation: Research Papers
%D 2018
%8 October
%I Association for Computational Linguistics
%C Brussels, Belgium
%F lu-etal-2018-neural
%X We incorporate an explicit neural interlingua into a multilingual encoder-decoder neural machine translation (NMT) architecture. We demonstrate that our model learns a language-independent representation by performing direct zero-shot translation (without using pivot translation), and by using the source sentence embeddings to create an English Yelp review classifier that, through the mediation of the neural interlingua, can also classify French and German reviews. Furthermore, we show that, despite using a smaller number of parameters than a pairwise collection of bilingual NMT models, our approach produces comparable BLEU scores for each language pair in WMT15.
%R 10.18653/v1/W18-6309
%U https://aclanthology.org/W18-6309
%U https://doi.org/10.18653/v1/W18-6309
%P 84-92
Markdown (Informal)
[A neural interlingua for multilingual machine translation](https://aclanthology.org/W18-6309) (Lu et al., WMT 2018)
ACL
- Yichao Lu, Phillip Keung, Faisal Ladhak, Vikas Bhardwaj, Shaonan Zhang, and Jason Sun. 2018. A neural interlingua for multilingual machine translation. In Proceedings of the Third Conference on Machine Translation: Research Papers, pages 84–92, Brussels, Belgium. Association for Computational Linguistics.