@inproceedings{herold-etal-2018-improving,
title = "Improving Neural Language Models with Weight Norm Initialization and Regularization",
author = "Herold, Christian and
Gao, Yingbo and
Ney, Hermann",
editor = "Bojar, Ond{\v{r}}ej and
Chatterjee, Rajen and
Federmann, Christian and
Fishel, Mark and
Graham, Yvette and
Haddow, Barry and
Huck, Matthias and
Yepes, Antonio Jimeno and
Koehn, Philipp and
Monz, Christof and
Negri, Matteo and
N{\'e}v{\'e}ol, Aur{\'e}lie and
Neves, Mariana and
Post, Matt and
Specia, Lucia and
Turchi, Marco and
Verspoor, Karin",
booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
month = oct,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-6310/",
doi = "10.18653/v1/W18-6310",
pages = "93--100",
abstract = "Embedding and projection matrices are commonly used in neural language models (NLM) as well as in other sequence processing networks that operate on large vocabularies. We examine such matrices in fine-tuned language models and observe that a NLM learns word vectors whose norms are related to the word frequencies. We show that by initializing the weight norms with scaled log word counts, together with other techniques, lower perplexities can be obtained in early epochs of training. We also introduce a weight norm regularization loss term, whose hyperparameters are tuned via a grid search. With this method, we are able to significantly improve perplexities on two word-level language modeling tasks (without dynamic evaluation): from 54.44 to 53.16 on Penn Treebank (PTB) and from 61.45 to 60.13 on WikiText-2 (WT2)."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="herold-etal-2018-improving">
<titleInfo>
<title>Improving Neural Language Models with Weight Norm Initialization and Regularization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Herold</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yingbo</namePart>
<namePart type="family">Gao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hermann</namePart>
<namePart type="family">Ney</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third Conference on Machine Translation: Research Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ondřej</namePart>
<namePart type="family">Bojar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rajen</namePart>
<namePart type="family">Chatterjee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Federmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Fishel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yvette</namePart>
<namePart type="family">Graham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barry</namePart>
<namePart type="family">Haddow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthias</namePart>
<namePart type="family">Huck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antonio</namePart>
<namePart type="given">Jimeno</namePart>
<namePart type="family">Yepes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Koehn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christof</namePart>
<namePart type="family">Monz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matteo</namePart>
<namePart type="family">Negri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurélie</namePart>
<namePart type="family">Névéol</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mariana</namePart>
<namePart type="family">Neves</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matt</namePart>
<namePart type="family">Post</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Turchi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Karin</namePart>
<namePart type="family">Verspoor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Embedding and projection matrices are commonly used in neural language models (NLM) as well as in other sequence processing networks that operate on large vocabularies. We examine such matrices in fine-tuned language models and observe that a NLM learns word vectors whose norms are related to the word frequencies. We show that by initializing the weight norms with scaled log word counts, together with other techniques, lower perplexities can be obtained in early epochs of training. We also introduce a weight norm regularization loss term, whose hyperparameters are tuned via a grid search. With this method, we are able to significantly improve perplexities on two word-level language modeling tasks (without dynamic evaluation): from 54.44 to 53.16 on Penn Treebank (PTB) and from 61.45 to 60.13 on WikiText-2 (WT2).</abstract>
<identifier type="citekey">herold-etal-2018-improving</identifier>
<identifier type="doi">10.18653/v1/W18-6310</identifier>
<location>
<url>https://aclanthology.org/W18-6310/</url>
</location>
<part>
<date>2018-10</date>
<extent unit="page">
<start>93</start>
<end>100</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving Neural Language Models with Weight Norm Initialization and Regularization
%A Herold, Christian
%A Gao, Yingbo
%A Ney, Hermann
%Y Bojar, Ondřej
%Y Chatterjee, Rajen
%Y Federmann, Christian
%Y Fishel, Mark
%Y Graham, Yvette
%Y Haddow, Barry
%Y Huck, Matthias
%Y Yepes, Antonio Jimeno
%Y Koehn, Philipp
%Y Monz, Christof
%Y Negri, Matteo
%Y Névéol, Aurélie
%Y Neves, Mariana
%Y Post, Matt
%Y Specia, Lucia
%Y Turchi, Marco
%Y Verspoor, Karin
%S Proceedings of the Third Conference on Machine Translation: Research Papers
%D 2018
%8 October
%I Association for Computational Linguistics
%C Brussels, Belgium
%F herold-etal-2018-improving
%X Embedding and projection matrices are commonly used in neural language models (NLM) as well as in other sequence processing networks that operate on large vocabularies. We examine such matrices in fine-tuned language models and observe that a NLM learns word vectors whose norms are related to the word frequencies. We show that by initializing the weight norms with scaled log word counts, together with other techniques, lower perplexities can be obtained in early epochs of training. We also introduce a weight norm regularization loss term, whose hyperparameters are tuned via a grid search. With this method, we are able to significantly improve perplexities on two word-level language modeling tasks (without dynamic evaluation): from 54.44 to 53.16 on Penn Treebank (PTB) and from 61.45 to 60.13 on WikiText-2 (WT2).
%R 10.18653/v1/W18-6310
%U https://aclanthology.org/W18-6310/
%U https://doi.org/10.18653/v1/W18-6310
%P 93-100
Markdown (Informal)
[Improving Neural Language Models with Weight Norm Initialization and Regularization](https://aclanthology.org/W18-6310/) (Herold et al., WMT 2018)
ACL