Abstract
We study two problems in neural machine translation (NMT). First, in beam search, whereas a wider beam should in principle help translation, it often hurts NMT. Second, NMT has a tendency to produce translations that are too short. Here, we argue that these problems are closely related and both rooted in label bias. We show that correcting the brevity problem almost eliminates the beam problem; we compare some commonly-used methods for doing this, finding that a simple per-word reward works well; and we introduce a simple and quick way to tune this reward using the perceptron algorithm.- Anthology ID:
- W18-6322
- Volume:
- Proceedings of the Third Conference on Machine Translation: Research Papers
- Month:
- October
- Year:
- 2018
- Address:
- Brussels, Belgium
- Editors:
- Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Mark Fishel, Yvette Graham, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, Christof Monz, Matteo Negri, Aurélie Névéol, Mariana Neves, Matt Post, Lucia Specia, Marco Turchi, Karin Verspoor
- Venue:
- WMT
- SIG:
- SIGMT
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 212–223
- Language:
- URL:
- https://aclanthology.org/W18-6322
- DOI:
- 10.18653/v1/W18-6322
- Bibkey:
- Cite (ACL):
- Kenton Murray and David Chiang. 2018. Correcting Length Bias in Neural Machine Translation. In Proceedings of the Third Conference on Machine Translation: Research Papers, pages 212–223, Brussels, Belgium. Association for Computational Linguistics.
- Cite (Informal):
- Correcting Length Bias in Neural Machine Translation (Murray & Chiang, WMT 2018)
- Copy Citation:
- PDF:
- https://aclanthology.org/W18-6322.pdf
Export citation
@inproceedings{murray-chiang-2018-correcting, title = "Correcting Length Bias in Neural Machine Translation", author = "Murray, Kenton and Chiang, David", editor = "Bojar, Ond{\v{r}}ej and Chatterjee, Rajen and Federmann, Christian and Fishel, Mark and Graham, Yvette and Haddow, Barry and Huck, Matthias and Yepes, Antonio Jimeno and Koehn, Philipp and Monz, Christof and Negri, Matteo and N{\'e}v{\'e}ol, Aur{\'e}lie and Neves, Mariana and Post, Matt and Specia, Lucia and Turchi, Marco and Verspoor, Karin", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Brussels, Belgium", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W18-6322", doi = "10.18653/v1/W18-6322", pages = "212--223", abstract = "We study two problems in neural machine translation (NMT). First, in beam search, whereas a wider beam should in principle help translation, it often hurts NMT. Second, NMT has a tendency to produce translations that are too short. Here, we argue that these problems are closely related and both rooted in label bias. We show that correcting the brevity problem almost eliminates the beam problem; we compare some commonly-used methods for doing this, finding that a simple per-word reward works well; and we introduce a simple and quick way to tune this reward using the perceptron algorithm.", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="murray-chiang-2018-correcting"> <titleInfo> <title>Correcting Length Bias in Neural Machine Translation</title> </titleInfo> <name type="personal"> <namePart type="given">Kenton</namePart> <namePart type="family">Murray</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">David</namePart> <namePart type="family">Chiang</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2018-10</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the Third Conference on Machine Translation: Research Papers</title> </titleInfo> <name type="personal"> <namePart type="given">Ondřej</namePart> <namePart type="family">Bojar</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Rajen</namePart> <namePart type="family">Chatterjee</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christian</namePart> <namePart type="family">Federmann</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mark</namePart> <namePart type="family">Fishel</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yvette</namePart> <namePart type="family">Graham</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Barry</namePart> <namePart type="family">Haddow</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matthias</namePart> <namePart type="family">Huck</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Antonio</namePart> <namePart type="given">Jimeno</namePart> <namePart type="family">Yepes</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Philipp</namePart> <namePart type="family">Koehn</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christof</namePart> <namePart type="family">Monz</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matteo</namePart> <namePart type="family">Negri</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Aurélie</namePart> <namePart type="family">Névéol</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mariana</namePart> <namePart type="family">Neves</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matt</namePart> <namePart type="family">Post</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Lucia</namePart> <namePart type="family">Specia</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Marco</namePart> <namePart type="family">Turchi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Karin</namePart> <namePart type="family">Verspoor</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>Association for Computational Linguistics</publisher> <place> <placeTerm type="text">Brussels, Belgium</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>We study two problems in neural machine translation (NMT). First, in beam search, whereas a wider beam should in principle help translation, it often hurts NMT. Second, NMT has a tendency to produce translations that are too short. Here, we argue that these problems are closely related and both rooted in label bias. We show that correcting the brevity problem almost eliminates the beam problem; we compare some commonly-used methods for doing this, finding that a simple per-word reward works well; and we introduce a simple and quick way to tune this reward using the perceptron algorithm.</abstract> <identifier type="citekey">murray-chiang-2018-correcting</identifier> <identifier type="doi">10.18653/v1/W18-6322</identifier> <location> <url>https://aclanthology.org/W18-6322</url> </location> <part> <date>2018-10</date> <extent unit="page"> <start>212</start> <end>223</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T Correcting Length Bias in Neural Machine Translation %A Murray, Kenton %A Chiang, David %Y Bojar, Ondřej %Y Chatterjee, Rajen %Y Federmann, Christian %Y Fishel, Mark %Y Graham, Yvette %Y Haddow, Barry %Y Huck, Matthias %Y Yepes, Antonio Jimeno %Y Koehn, Philipp %Y Monz, Christof %Y Negri, Matteo %Y Névéol, Aurélie %Y Neves, Mariana %Y Post, Matt %Y Specia, Lucia %Y Turchi, Marco %Y Verspoor, Karin %S Proceedings of the Third Conference on Machine Translation: Research Papers %D 2018 %8 October %I Association for Computational Linguistics %C Brussels, Belgium %F murray-chiang-2018-correcting %X We study two problems in neural machine translation (NMT). First, in beam search, whereas a wider beam should in principle help translation, it often hurts NMT. Second, NMT has a tendency to produce translations that are too short. Here, we argue that these problems are closely related and both rooted in label bias. We show that correcting the brevity problem almost eliminates the beam problem; we compare some commonly-used methods for doing this, finding that a simple per-word reward works well; and we introduce a simple and quick way to tune this reward using the perceptron algorithm. %R 10.18653/v1/W18-6322 %U https://aclanthology.org/W18-6322 %U https://doi.org/10.18653/v1/W18-6322 %P 212-223
Markdown (Informal)
[Correcting Length Bias in Neural Machine Translation](https://aclanthology.org/W18-6322) (Murray & Chiang, WMT 2018)
- Correcting Length Bias in Neural Machine Translation (Murray & Chiang, WMT 2018)
ACL
- Kenton Murray and David Chiang. 2018. Correcting Length Bias in Neural Machine Translation. In Proceedings of the Third Conference on Machine Translation: Research Papers, pages 212–223, Brussels, Belgium. Association for Computational Linguistics.