An Empirical Study of Machine Translation for the Shared Task of WMT18
Chao Bei, Hao Zong, Yiming Wang, Baoyong Fan, Shiqi Li, Conghu Yuan
Correct Metadata for
Abstract
This paper describes the Global Tone Communication Co., Ltd.’s submission of the WMT18 shared news translation task. We participated in the English-to-Chinese direction and get the best BLEU (43.8) scores among all the participants. The submitted system focus on data clearing and techniques to build a competitive model for this task. Unlike other participants, the submitted system are mainly relied on the data filtering to obtain the best BLEU score. We do data filtering not only for provided sentences but also for the back translated sentences. The techniques we apply for data filtering include filtering by rules, language models and translation models. We also conduct several experiments to validate the effectiveness of training techniques. According to our experiments, the Annealing Adam optimizing function and ensemble decoding are the most effective techniques for the model training.- Anthology ID:
- W18-6404
- Volume:
- Proceedings of the Third Conference on Machine Translation: Shared Task Papers
- Month:
- October
- Year:
- 2018
- Address:
- Belgium, Brussels
- Editors:
- Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Mark Fishel, Yvette Graham, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, Christof Monz, Matteo Negri, Aurélie Névéol, Mariana Neves, Matt Post, Lucia Specia, Marco Turchi, Karin Verspoor
- Venue:
- WMT
- SIG:
- SIGMT
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 340–344
- Language:
- URL:
- https://aclanthology.org/W18-6404/
- DOI:
- 10.18653/v1/W18-6404
- Bibkey:
- Cite (ACL):
- Chao Bei, Hao Zong, Yiming Wang, Baoyong Fan, Shiqi Li, and Conghu Yuan. 2018. An Empirical Study of Machine Translation for the Shared Task of WMT18. In Proceedings of the Third Conference on Machine Translation: Shared Task Papers, pages 340–344, Belgium, Brussels. Association for Computational Linguistics.
- Cite (Informal):
- An Empirical Study of Machine Translation for the Shared Task of WMT18 (Bei et al., WMT 2018)
- Copy Citation:
- PDF:
- https://aclanthology.org/W18-6404.pdf
Export citation
@inproceedings{bei-etal-2018-empirical,
title = "An Empirical Study of Machine Translation for the Shared Task of {WMT}18",
author = "Bei, Chao and
Zong, Hao and
Wang, Yiming and
Fan, Baoyong and
Li, Shiqi and
Yuan, Conghu",
editor = "Bojar, Ond{\v{r}}ej and
Chatterjee, Rajen and
Federmann, Christian and
Fishel, Mark and
Graham, Yvette and
Haddow, Barry and
Huck, Matthias and
Yepes, Antonio Jimeno and
Koehn, Philipp and
Monz, Christof and
Negri, Matteo and
N{\'e}v{\'e}ol, Aur{\'e}lie and
Neves, Mariana and
Post, Matt and
Specia, Lucia and
Turchi, Marco and
Verspoor, Karin",
booktitle = "Proceedings of the Third Conference on Machine Translation: Shared Task Papers",
month = oct,
year = "2018",
address = "Belgium, Brussels",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-6404/",
doi = "10.18653/v1/W18-6404",
pages = "340--344",
abstract = "This paper describes the Global Tone Communication Co., Ltd.{'}s submission of the WMT18 shared news translation task. We participated in the English-to-Chinese direction and get the best BLEU (43.8) scores among all the participants. The submitted system focus on data clearing and techniques to build a competitive model for this task. Unlike other participants, the submitted system are mainly relied on the data filtering to obtain the best BLEU score. We do data filtering not only for provided sentences but also for the back translated sentences. The techniques we apply for data filtering include filtering by rules, language models and translation models. We also conduct several experiments to validate the effectiveness of training techniques. According to our experiments, the Annealing Adam optimizing function and ensemble decoding are the most effective techniques for the model training."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bei-etal-2018-empirical">
<titleInfo>
<title>An Empirical Study of Machine Translation for the Shared Task of WMT18</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chao</namePart>
<namePart type="family">Bei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hao</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yiming</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Baoyong</namePart>
<namePart type="family">Fan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shiqi</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Conghu</namePart>
<namePart type="family">Yuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third Conference on Machine Translation: Shared Task Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ondřej</namePart>
<namePart type="family">Bojar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rajen</namePart>
<namePart type="family">Chatterjee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Federmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Fishel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yvette</namePart>
<namePart type="family">Graham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barry</namePart>
<namePart type="family">Haddow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthias</namePart>
<namePart type="family">Huck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antonio</namePart>
<namePart type="given">Jimeno</namePart>
<namePart type="family">Yepes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Koehn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christof</namePart>
<namePart type="family">Monz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matteo</namePart>
<namePart type="family">Negri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurélie</namePart>
<namePart type="family">Névéol</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mariana</namePart>
<namePart type="family">Neves</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matt</namePart>
<namePart type="family">Post</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Turchi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Karin</namePart>
<namePart type="family">Verspoor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Belgium, Brussels</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the Global Tone Communication Co., Ltd.’s submission of the WMT18 shared news translation task. We participated in the English-to-Chinese direction and get the best BLEU (43.8) scores among all the participants. The submitted system focus on data clearing and techniques to build a competitive model for this task. Unlike other participants, the submitted system are mainly relied on the data filtering to obtain the best BLEU score. We do data filtering not only for provided sentences but also for the back translated sentences. The techniques we apply for data filtering include filtering by rules, language models and translation models. We also conduct several experiments to validate the effectiveness of training techniques. According to our experiments, the Annealing Adam optimizing function and ensemble decoding are the most effective techniques for the model training.</abstract>
<identifier type="citekey">bei-etal-2018-empirical</identifier>
<identifier type="doi">10.18653/v1/W18-6404</identifier>
<location>
<url>https://aclanthology.org/W18-6404/</url>
</location>
<part>
<date>2018-10</date>
<extent unit="page">
<start>340</start>
<end>344</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings %T An Empirical Study of Machine Translation for the Shared Task of WMT18 %A Bei, Chao %A Zong, Hao %A Wang, Yiming %A Fan, Baoyong %A Li, Shiqi %A Yuan, Conghu %Y Bojar, Ondřej %Y Chatterjee, Rajen %Y Federmann, Christian %Y Fishel, Mark %Y Graham, Yvette %Y Haddow, Barry %Y Huck, Matthias %Y Yepes, Antonio Jimeno %Y Koehn, Philipp %Y Monz, Christof %Y Negri, Matteo %Y Névéol, Aurélie %Y Neves, Mariana %Y Post, Matt %Y Specia, Lucia %Y Turchi, Marco %Y Verspoor, Karin %S Proceedings of the Third Conference on Machine Translation: Shared Task Papers %D 2018 %8 October %I Association for Computational Linguistics %C Belgium, Brussels %F bei-etal-2018-empirical %X This paper describes the Global Tone Communication Co., Ltd.’s submission of the WMT18 shared news translation task. We participated in the English-to-Chinese direction and get the best BLEU (43.8) scores among all the participants. The submitted system focus on data clearing and techniques to build a competitive model for this task. Unlike other participants, the submitted system are mainly relied on the data filtering to obtain the best BLEU score. We do data filtering not only for provided sentences but also for the back translated sentences. The techniques we apply for data filtering include filtering by rules, language models and translation models. We also conduct several experiments to validate the effectiveness of training techniques. According to our experiments, the Annealing Adam optimizing function and ensemble decoding are the most effective techniques for the model training. %R 10.18653/v1/W18-6404 %U https://aclanthology.org/W18-6404/ %U https://doi.org/10.18653/v1/W18-6404 %P 340-344
Markdown (Informal)
[An Empirical Study of Machine Translation for the Shared Task of WMT18](https://aclanthology.org/W18-6404/) (Bei et al., WMT 2018)
- An Empirical Study of Machine Translation for the Shared Task of WMT18 (Bei et al., WMT 2018)
ACL
- Chao Bei, Hao Zong, Yiming Wang, Baoyong Fan, Shiqi Li, and Conghu Yuan. 2018. An Empirical Study of Machine Translation for the Shared Task of WMT18. In Proceedings of the Third Conference on Machine Translation: Shared Task Papers, pages 340–344, Belgium, Brussels. Association for Computational Linguistics.