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Abstract

This paper presents the NICT’s participation
to the WMT18 shared news translation task.
We participated in the eight translation di-
rections of four language pairs: Estonian-
English, Finnish-English, Turkish-English and
Chinese-English. For each translation direc-
tion, we prepared state-of-the-art statistical
(SMT) and neural (NMT) machine translation
systems. Our NMT systems were trained with
the transformer architecture using the provided
parallel data enlarged with a large quantity of
back-translated monolingual data that we gen-
erated with a new incremental training frame-
work. Our primary submissions to the task are
the result of a simple combination of our SMT
and NMT systems. Our systems are ranked
first for the Estonian-English and Finnish-
English language pairs (constraint) according
to BLEU-cased.

1 Introduction

This paper describes the neural (NMT) and sta-
tistical machine translation systems (SMT) built
for the participation of the National Institute
of Information and Communications Technology
(NICT) to the WMT18 shared News Transla-
tion Task (Bojar et al., 2018). We participated
in four language pairs (eight translation direc-
tions): Estonian-English (Et-En), Finnish-English
(Fi-En), Turkish-English (Tr-En), and Chinese-
English (Zh-En). We chose these language pairs
since they appear to be among the most chal-
lenging: involving distant languages and with less
training data, for Finnish, Estonian, and Turkish,
provided by the organizers than for Russian, Ger-
man, and Czech. All our systems are constrained,
i.e., we used only the parallel and monolingual
data provided by the organizers to train and tune
them. For all the translation directions, we trained
NMT and SMT systems, and combined them

through n-best list reranking using different infor-
mative features as proposed by Marie and Fujita
(2018). This simple combination method, asso-
ciated to the exploitation of large back-translated
monolingual data, performed among the best MT
systems at WMT18. Especially for the competi-
tive Et-En and Fi-En translation tasks, for which
our submissions are ranked first according to the
BLEU-cased metric (henceforth BLEU). Our sys-
tems for Et-En, Fi-En, and Tr-En were trained
using the exactly same procedures, without any
specific linguistic treatments. On the other hand,
for Zh-En, we used a specific tokenizer and used
slightly different training parameters due to the
much larger quantity of training data.

The remainder of this paper is organized as fol-
lows. In Section 2, we introduce the data prepro-
cessing. In Section 3, we describe the details of
our NMT and SMT systems. The back-translation
of monolingual data using our new incremental
training framework for NMT is described in Sec-
tion 4. Then, the combination of NMT and SMT
is described in Section 5. Empirical results pro-
duced with our systems are showed and analyzed
in Section 6, and Section 7 concludes this paper.

2 Data Preprocessing

2.1 Data
As parallel data to train our systems, we used
all the available data for all our targeted transla-
tion directions, except the “Wiki Headlines”1 cor-
pus for Fi-En. As English monolingual data, we
used all the available data except the “Common
Crawl” and “News Discussions” corpora.2 For all
other languages, we used all the available mono-
lingual corpora, except for Turkish for which we

1It contains only very short segments that are not sen-
tences and that we therefore assume to be of no use in NMT.

2The “News Crawl” data are sufficiently large and that
these corpora are not in-domain monolingual data.

449

https://doi.org/10.18653/v1/W18-64046


Language pair #sent. pairs #tokens

Et-En 1.9M 29.4M (Et) 36.0M (En)
Fi-En 3.1M 52.9M (Fi) 72.8M (En)
Tr-En 207.4k 4.4M (Tr) 5.1M (En)
Zh-En 24.8M 509.9M (Zh) 576.2M (En)

Table 1: Statistics of our preprocessed parallel data.

Language #lines #tokens

En 338.7M 7.5B
Et 146.1M 3.6B
Fi 177.1M 3.2B
Tr 105.0M 1.8B
Zh 130.5M 2.3B

Table 2: Statistics of our preprocessed monolingual
data.

used only 100 millions sentence pairs randomly
extracted from “Common Crawl.”

To tune/validate and evaluate our systems, we
used Newstest2016 and Newstest2017 for Fi-En
and Tr-En, Newsdev2017 and Newstest2017 for
Zh-En, and Newsdev2018 for Et-En.

2.2 Tokenization, Truecasing and Cleaning

We used Moses tokenizer (Koehn et al., 2007)
and truecaser for English, Estonian, Finnish, and
Turkish. The truecaser was trained on one mil-
lion tokenized lines extracted randomly from the
monolingual data. Truecasing was then performed
on all the tokenized data. For Chinese, we used
Jieba3 for tokenization but did not perform
truecasing. For cleaning, we only applied the
Moses script clean-n-corpus.perl to re-
move lines in the parallel data containing more
than 80 tokens and replaced characters forbidden
by Moses. Note that we did not perform any
punctuation normalization. Tables 1 and 2 present
the statistics of the parallel and monolingual data,
respectively, after preprocessing.

3 MT Systems

3.1 NMT

To build competitive NMT systems, we chose
to rely on the transformer architecture (Vaswani
et al., 2017) since it has been shown to outper-
form, in quality and efficiency, the two other
mainstream architectures for NMT known as
deep recurrent neural network (deep RNN) and
convolutional neural network (CNN). We chose

3https://github.com/fxsjy/jieba

Marian4 (Junczys-Dowmunt et al., 2018) to
train and evaluate our NMT systems since it
supports state-of-the-art features and is one of
the fastest NMT framework publicly available.5

In order to limit the size of the vocabulary
of the NMT models, we segmented tokens in
the parallel data into subword units via byte
pair encoding (BPE) (Sennrich et al., 2016b)
using 50k operations. BPE segmentations were
jointly learned on the training parallel data for
source and target languages, except for Zh-En
for which Chinese and English segmentations
were trained separately. All our NMT systems
for Et-En, Fi-En, and Tr-En were consistently
trained on 4 GPUs,6 with the following param-
eters for Marian: --type transformer
--max-length 80 --mini-batch-fit
--valid-freq 5000 --save-freq
5000 --workspace 8000 --disp-freq
500 --beam-size 12 --normalize 1
--valid-mini-batch 16 --overwrite
--early-stopping 5 --cost-type
ce-mean-words --valid-metrics
ce-mean-words perplexity
translation --keep-best
--enc-depth 6 --dec-depth 6
--transformer-dropout 0.1
--learn-rate 0.0003 --dropout-src
0.1 --dropout-trg 0.1 --lr-warmup
16000 --lr-decay-inv-sqrt 16000
--lr-report --label-smoothing 0.1
--devices 0 1 2 3 --dim-vocabs
50000 50000 --optimizer-params
0.9 0.98 1e-09 --clip-norm 5
--sync-sgd --tied-embeddings
--exponential-smoothing. For Zh-
En, we did not use --dropout-src 0.1
--dropout-trg 0.1 since the training data
is much larger. We performed NMT decoding
with an ensemble of a total of six models accord-
ing to the best BLEU (Papineni et al., 2002) and
the best perplexity scores,7 produced by three
independent training runs.

4https://marian-nmt.github.io/, version
1.4.0

5It is fully implemented in pure C++ and supports multi-
GPU training.

6NVIDIA® Tesla® P100 16Gb.
7Note that the same model may give the best BLEU score

and also the best perplexity score. Nonetheless, for consis-
tency across language pairs, we systematically kept two mod-
els even if they were identical.
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3.2 SMT

We also trained SMT systems using Moses.
Word alignments and phrase tables were
trained on the tokenized parallel data using
mgiza. Source-to-target and target-to-source
word alignments were symmetrized with the
grow-diag-final-and heuristic. We trained
hierarchical SMT models for Et-En and Fi-En
since they provided better results than regular
phrase-based models on our development data for
these language pairs.8 We also expected a similar
observation for Tr-En and Zh-En. However, we
were unable to exploit hierarchical models for the
language pair Tr-En9 while hierarchical models
for the language pairs Zh-En were extremely large
due to the size of our training data. Consequently,
for Tr-En and Zh-En we simply trained regular
phrase-based models using MSLR (monotone,
swap, discontinuous-left, discontinuous-right)
lexicalized reordering models and used the default
distortion limit of 6. We trained two 4-gram
language models: one on the entire monolingual
data concatenated to the target side of the parallel
data, and another one on the in-domain “News
Crawl” corpora only, using LMPLZ (Heafield
et al., 2013). For English, all singletons were
pruned due to the large size of the monolingual
data. To tune the SMT model weights, we used
KB-MIRA (Cherry and Foster, 2012) and selected
the weights giving the best BLEU score on the
development data after 15 decoding runs.

4 Back-translation of Monolingual Data

4.1 Incremental Back-Translation with
Et-En, Fi-En, and Tr-En

We introduced an incremental training framework
for NMT aiming to iteratively increase the qual-
ity and quantity of the synthetic parallel data
used for training. In this framework, we first
simultaneously but independently train a source-
to-target and a target-to-source NMT systems us-
ing the same original parallel data. Then, we
back-translate source and target monolingual data
respectively using the source-to-target and the
target-to-source NMT systems, and obtain two
sets of synthetic parallel data. And then, a new
source-to-target and a new target-to-source NMT

8Between 0.5 and 1 BLEU points of improvement.
9Moses consistently crashed (segmentation fault) during

the decoding of the development data.
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Figure 1: Our incremental training framework.

systems are trained, from scratch, on their respec-
tive new training data comprising the mixture of
the original parallel data and the synthetic parallel
data whose source side is back-translated from the
target side. At this stage, we just do what is usually
done by previous work (Sennrich et al., 2016a).

As illustrated in Figure 1, we continue this
procedure iteratively. Using source-to-target and
target-to-source NMT systems trained on the mix-
ture of the synthetic and original parallel data,
we back-translate a larger number of monolingual
sentences, including the same sentences back-
translated at the first iteration. Since we have bet-
ter NMT systems than those at the first iteration,
we can expect the back-translation to be of a bet-
ter quality. We mix this new synthetic parallel data
to the original one and train again from scratch a
source-to-target and a target-to-source NMT sys-
tems to obtain further improved translation mod-
els. Note that this procedure is partially similar
to the work proposed by Zhang et al. (2018) and
Hoang et al. (2018), but differs in the sense that we
increase incrementally our back-translated data.

Given the number of sentences used in the first
iteration, k1, and an expansion factor, r, we de-
termine ki, the number of monolingual sentences
back-translated at iteration i, as follows:

ki = rki−1 (1)

The parameters used for the given language
pairs are listed in Table 3. The monolingual sen-
tences to be back-translated were randomly ex-
tracted from the NewsCrawl corpora. For Et-En
and Fi-En, we stopped the incremental training
after 2 iterations, back-translating up to 2M sen-
tences. For Tr-En, we observed improvements for
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Language pair k1 r #iter. (total)

Et-En 1M 2 2
Fi-En 1M 2 2
Tr-En 200k 2 4

Table 3: Parameters used for our incremental training.
For each language pair, the same parameters were used
for both translation directions. In our preliminary ex-
periments, we found that setting r = 2 and k1 very
close to, or smaller than, the size of the original paral-
lel data consistently gives good results across language
pairs. Fine-tuning r and k1 would result in a better
translation quality but at a greater cost.

both translation directions until the fourth itera-
tion that back-translated 1.6M sentences (approx-
imately 8 times the size of the original parallel
data). In our preliminary experiments, we found
that incremental training significantly improves
the translation quality over an NMT system that
was trained directly, on the same amount of back-
translated sentences. For instance, we observed a
0.6 BLEU points improvements for Tr→En over a
system trained on 1.6M sentences back-translated
by a system trained on the original parallel data (as
in (Sennrich et al., 2016a)).

4.2 Setting for Zh-En

For the Zh-En language pair, since much larger
parallel data were provided to train the system, we
did not perform the incremental back-translation
described in Section 4.1. For En→Zh, we back-
translated the entire XMU Chinese monolingual
corpus containing 5.4M sentences as the source
to produce synthetic English data. For Zh→En,
we empirically compared the impact of back-
translating different sizes of English monolingual
data, using the first 10M, 20M, and 40M lines of
the concatenation of News Crawl-2016 and News
Crawl-2017 English corpora to produce synthetic
Chinese data. As shown in Table 4, there is not a
significant difference in exploiting back-translated
data as large as 40M lines compared to only 10M
lines. Therefore, we selected the first 10M lines of
the News Crawl-2016 English corpus to produce
synthetic Chinese data.

5 Combination of NMT and SMT

Although we can expect SMT to perform very
poorly for all the language pairs we considered,10

10Especially due to the rich morphology of the languages
involved and the long distance reorderings to perform in order

#lines back-translated #BLEU

10M 21.4
20M 21.4
40M 21.5

Table 4: Results for different sizes of back-translated
data for the Zh→En translation direction on News-
dev2017.

our primary submissions for WMT18 are the re-
sults of a simple combination of NMT and SMT.
Indeed, as demonstrated by Marie and Fujita
(2018), and despite the simplicity of the method
used, combining NMT and SMT makes MT more
robust and can significantly improve translation
quality, even when SMT greatly underperforms
NMT. Following Marie and Fujita (2018), our
combination of NMT and SMT works as follows.

5.1 Generation of n-best Lists

We first produced the 100-best translation hy-
potheses with our NMT and SMT systems, inde-
pendently.11 Unlike Moses, Marian must use a
beam of size k to produce a k-best list during de-
coding. However, using a larger beam size during
decoding for NMT may worsen translation qual-
ity (Koehn and Knowles, 2017).12 Consequently,
we also produced with Marian the 10-best lists,
for Zh-En, and 12-best lists for the other language
pairs, and merged them with Marian’s 100-best
lists to obtain lists containing up to 110 or 112 hy-
potheses.13 In this way, we make sure that we still
have hypotheses of good quality in the lists de-
spite using a larger beam size.14 Then, we merged
the lists produced by Marian and Moses. We
rescored all the hypotheses in the resulting lists
with a reranking framework using features to bet-
ter model the fluency and the adequacy of each hy-

to produce a translation of good quality.
11We used the option distinct in Moses to avoid du-

plicated hypotheses, i.e., with the same content but obtained
from different word alignments, and consequently to increase
diversity in the generated n-best lists.

12For Zh-En, the decoding of the test data with k=100 re-
sulted in a drop of 0.4 BLEU points compared to a decoding
with k=10. However, for the other language pairs we did not
observe such a quality drop but instead a consistent and slight
improvement of BLEU scores.

13Note that we did not remove duplicated hypotheses that
may appear, for instance, in both 10-best and 100-best lists.

14Note that we could have also generated many individual
smaller n-best lists, for instance using all our NMT models
independently, and merge them to increase the diversity of
the hypotheses list to rerank and therefore obtained better re-
sults. However, we decided to leave the exploration of this
possibility for feature work.
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Feature Description

L2R (6) Scores given by each of the 6 left-to-right Marian models
R2L (2) Scores given by each of the 2 (or 4 for Tr-En) right-to-left Marian models
LEX (4) Sentence-level translation probabilities, for both translation directions
LM (2) Scores given by the two language models used by the Moses baseline systems
WPP (2) Averaged word posterior probability
LEN (2) Difference between the length of the source sentence and the length of the translation hypothesis, and

its absolute value
SYS (1) System flag, 1 if the hypothesis comes from Moses n-best list or 0 otherwise
MBR (2) For Tr-En only: MBR decoding using sBLEU and chrF++
PBFD (1) For Tr-En only: The phrase-based forced decoding score

L2R-bwd (6) Scores given by each of the 6 left-to-right Marian models for the backward translation direction
R2L-bwd (2) Scores given by each of the 2 (or 4 for Tr-En) right-to-left Marian models for the backward translation

direction

Table 5: Set of features used by our reranking systems. The column “Feature” refers to the same feature name used
in Marie and Fujita (2018). Note that the two last feature sets, “L2R-bwd” and “R2L-bwd,” were not experimented
in Marie and Fujita (2018). The numbers between parentheses indicate the number of scores in each feature set.

# System Et→En En→Et Fi→En En→Fi Tr→En En→Tr Zh→En En→Zh

1. Moses 18.2 15.1 15.8 10.7 12.1 8.4 16.9 28.0
2. Moses NMT-reranked 20.2 17.6 17.5 12.2 14.2 10.1 19.0 29.9

3. Marian single (w/o backtr) 22.9 18.5 17.6 13.2 20.2 12.2 23.7 33.0
4. Marian single (w/ backtr) 28.6 24.0 23.1 16.8 25.2 18.0 24.7 37.2
5. Marian ensemble (w/ backtr) 29.1 24.3 23.6 17.3 25.8 18.3 25.9 37.9

6 Moses + Marian 30.7 25.2 24.9 18.2 26.9 19.2 26.7 39.7

Table 6: Detokenized BLEU-cased scores for our MT systems on the Newstest2018 test set. “NMT-reranked”
denotes the reranking of the Moses’s 100-best hypotheses using all our NMT models (left-to-right and right-to-
left, for both translation directions, trained with back-translated data) as features. “backtr” denotes the use or not
of back-translated monolingual data. “Moses + Marian” denotes our combination of best NMT (#5) and SMT
(#1) systems described in Section 5.

pothesis. This method can find a better hypothesis
in these merged n-best lists than the one-best hy-
pothesis originated by either Moses or Marian.

5.2 Reranking Framework and Features

We chose KB-MIRA as a rescoring framework and
used a subset of the features proposed in Marie
and Fujita (2018). As listed in Table 5, it in-
cludes the scores given by the 6 left-to-right NMT
models used to perform ensemble decoding (see
Section 3.1). We also used as features the scores
given by right-to-left NMT models that we trained
for each translation direction with the same pa-
rameters as left-to-right NMT models. The two
right-to-left NMT models, each achieving the best
BLEU and the best perplexity scores on the devel-
opment data, were selected, giving us two other
features for each translation direction. Since the
Tr-En training parallel data are much smaller, we
were able to perform one more right-to-left train-

ing run for Tr→En and En→Tr.15 We also experi-
mented with the use of the scores computed from
the NMT models trained for the backward transla-
tion direction. In total, we have then 16 features,
or 20 for Tr-En, computed from NMT models. All
the following features we used are described in de-
tails by Marie and Fujita (2018). We computed
sentence-level translation probabilities using the
lexical translation probabilities learned by mgiza
during the training of our SMT systems. The two
language models trained for SMT for each trans-
lation direction were also used to score the n-best
translation hypotheses. To account for hypotheses
length, we added the difference, and its absolute
value, between the number of tokens in the trans-
lation hypothesis and the source sentence. As a
consensus-based feature, we used the word poste-
rior probabilities.

For only the Tr-En language pair, we were also
able to compute a phrase-based forced decoding

15In practice, adding one more right-to-left model for
reranking did not significantly improve the BLEU score on
the development data.
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score (Zhang et al., 2017) thanks to the small
size of the phrase table learned for this language
pair. Also only for this language pair, we com-
puted the scores for each hypothesis given by the
so-called minimum Bayes risk (MBR) decoding
for n-best list using two metrics: sBLEU and
chrF++ (Popović, 2017).

The reranking framework was trained on n-best
lists produced by the decoding of the same devel-
opment data that we used to validate NMT sys-
tem’s training and to tune SMT’s model weights.

6 Results

The results of our systems computed for the New-
stest2018 test set are presented by Table 6.

As expected, SMT systems greatly underper-
formed our best NMT systems with differences in
BLEU points ranging from 6.6 (En→Fi) to 13.7
(Tr→En). Reranking Moses 100-best hypothe-
ses using NMT models (NMT-reranked) signifi-
cantly improved the translation quality for all the
translation directions. For Fi→En, Moses NMT-
reranked performed only 0.1 BLEU points worse
than Marian single (w/o backtr). This result
demonstrates the ability of SMT in producing bet-
ter translation hypotheses than its one-best hy-
pothesis. Indeed, a better translation can be eas-
ily retrieved with the help of NMT models within
the 100-best lists. Using back-translated data dur-
ing training was very effective for Et-En, Fi-En,
and Tr-En, with improvements ranging from 3.6 to
5.8 BLEU points. Improvements were less signif-
icant for Zh-En, especially for Zh→En with only
1.0 BLEU points of improvements. This may be
explained by the much larger parallel data already
used to train systems for Zh-En. Another inter-
esting finding is the relative inefficiency of using
an ensemble of 3 models for NMT decoding with
the transformer architecture over using a single
model, as opposed to what was reported by most
participants at WMT17 (Bojar et al., 2017) using
RNN. For instance, for En→Et and En→Tr en-
semble decoding improved the translation quality
by only 0.3 BLEU points.

Our combination of SMT and NMT signifi-
cantly outperformed all our NMT systems for all
translation directions. For instance, this combina-
tion brought 1.6 and 1.8 BLEU points of improve-
ments for Et→En and En→Zh, respectively, over
our best NMT systems.

7 Conclusion

We participated in eight translation directions and
for all of them we did experiments to compare
SMT and NMT performances. While SMT sig-
nificantly underperforms NMT, we showed that a
simple combination of both approaches delivers
the best results.
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