Abstract
This paper describes NTT’s neural machine translation systems submitted to the WMT 2018 English-German and German-English news translation tasks. Our submission has three main components: the Transformer model, corpus cleaning, and right-to-left n-best re-ranking techniques. Through our experiments, we identified two keys for improving accuracy: filtering noisy training sentences and right-to-left re-ranking. We also found that the Transformer model requires more training data than the RNN-based model, and the RNN-based model sometimes achieves better accuracy than the Transformer model when the corpus is small.- Anthology ID:
- W18-6421
- Volume:
- Proceedings of the Third Conference on Machine Translation: Shared Task Papers
- Month:
- October
- Year:
- 2018
- Address:
- Belgium, Brussels
- Editors:
- Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Mark Fishel, Yvette Graham, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, Christof Monz, Matteo Negri, Aurélie Névéol, Mariana Neves, Matt Post, Lucia Specia, Marco Turchi, Karin Verspoor
- Venue:
- WMT
- SIG:
- SIGMT
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 461–466
- Language:
- URL:
- https://aclanthology.org/W18-6421
- DOI:
- 10.18653/v1/W18-6421
- Bibkey:
- Cite (ACL):
- Makoto Morishita, Jun Suzuki, and Masaaki Nagata. 2018. NTT’s Neural Machine Translation Systems for WMT 2018. In Proceedings of the Third Conference on Machine Translation: Shared Task Papers, pages 461–466, Belgium, Brussels. Association for Computational Linguistics.
- Cite (Informal):
- NTT’s Neural Machine Translation Systems for WMT 2018 (Morishita et al., WMT 2018)
- Copy Citation:
- PDF:
- https://aclanthology.org/W18-6421.pdf
- Data
- WMT 2018
Export citation
@inproceedings{morishita-etal-2018-ntts, title = "{NTT}{'}s Neural Machine Translation Systems for {WMT} 2018", author = "Morishita, Makoto and Suzuki, Jun and Nagata, Masaaki", editor = "Bojar, Ond{\v{r}}ej and Chatterjee, Rajen and Federmann, Christian and Fishel, Mark and Graham, Yvette and Haddow, Barry and Huck, Matthias and Yepes, Antonio Jimeno and Koehn, Philipp and Monz, Christof and Negri, Matteo and N{\'e}v{\'e}ol, Aur{\'e}lie and Neves, Mariana and Post, Matt and Specia, Lucia and Turchi, Marco and Verspoor, Karin", booktitle = "Proceedings of the Third Conference on Machine Translation: Shared Task Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W18-6421", doi = "10.18653/v1/W18-6421", pages = "461--466", abstract = "This paper describes NTT{'}s neural machine translation systems submitted to the WMT 2018 English-German and German-English news translation tasks. Our submission has three main components: the Transformer model, corpus cleaning, and right-to-left n-best re-ranking techniques. Through our experiments, we identified two keys for improving accuracy: filtering noisy training sentences and right-to-left re-ranking. We also found that the Transformer model requires more training data than the RNN-based model, and the RNN-based model sometimes achieves better accuracy than the Transformer model when the corpus is small.", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="morishita-etal-2018-ntts"> <titleInfo> <title>NTT’s Neural Machine Translation Systems for WMT 2018</title> </titleInfo> <name type="personal"> <namePart type="given">Makoto</namePart> <namePart type="family">Morishita</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Jun</namePart> <namePart type="family">Suzuki</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Masaaki</namePart> <namePart type="family">Nagata</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2018-10</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the Third Conference on Machine Translation: Shared Task Papers</title> </titleInfo> <name type="personal"> <namePart type="given">Ondřej</namePart> <namePart type="family">Bojar</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Rajen</namePart> <namePart type="family">Chatterjee</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christian</namePart> <namePart type="family">Federmann</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mark</namePart> <namePart type="family">Fishel</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yvette</namePart> <namePart type="family">Graham</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Barry</namePart> <namePart type="family">Haddow</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matthias</namePart> <namePart type="family">Huck</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Antonio</namePart> <namePart type="given">Jimeno</namePart> <namePart type="family">Yepes</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Philipp</namePart> <namePart type="family">Koehn</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christof</namePart> <namePart type="family">Monz</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matteo</namePart> <namePart type="family">Negri</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Aurélie</namePart> <namePart type="family">Névéol</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mariana</namePart> <namePart type="family">Neves</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matt</namePart> <namePart type="family">Post</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Lucia</namePart> <namePart type="family">Specia</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Marco</namePart> <namePart type="family">Turchi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Karin</namePart> <namePart type="family">Verspoor</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>Association for Computational Linguistics</publisher> <place> <placeTerm type="text">Belgium, Brussels</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>This paper describes NTT’s neural machine translation systems submitted to the WMT 2018 English-German and German-English news translation tasks. Our submission has three main components: the Transformer model, corpus cleaning, and right-to-left n-best re-ranking techniques. Through our experiments, we identified two keys for improving accuracy: filtering noisy training sentences and right-to-left re-ranking. We also found that the Transformer model requires more training data than the RNN-based model, and the RNN-based model sometimes achieves better accuracy than the Transformer model when the corpus is small.</abstract> <identifier type="citekey">morishita-etal-2018-ntts</identifier> <identifier type="doi">10.18653/v1/W18-6421</identifier> <location> <url>https://aclanthology.org/W18-6421</url> </location> <part> <date>2018-10</date> <extent unit="page"> <start>461</start> <end>466</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T NTT’s Neural Machine Translation Systems for WMT 2018 %A Morishita, Makoto %A Suzuki, Jun %A Nagata, Masaaki %Y Bojar, Ondřej %Y Chatterjee, Rajen %Y Federmann, Christian %Y Fishel, Mark %Y Graham, Yvette %Y Haddow, Barry %Y Huck, Matthias %Y Yepes, Antonio Jimeno %Y Koehn, Philipp %Y Monz, Christof %Y Negri, Matteo %Y Névéol, Aurélie %Y Neves, Mariana %Y Post, Matt %Y Specia, Lucia %Y Turchi, Marco %Y Verspoor, Karin %S Proceedings of the Third Conference on Machine Translation: Shared Task Papers %D 2018 %8 October %I Association for Computational Linguistics %C Belgium, Brussels %F morishita-etal-2018-ntts %X This paper describes NTT’s neural machine translation systems submitted to the WMT 2018 English-German and German-English news translation tasks. Our submission has three main components: the Transformer model, corpus cleaning, and right-to-left n-best re-ranking techniques. Through our experiments, we identified two keys for improving accuracy: filtering noisy training sentences and right-to-left re-ranking. We also found that the Transformer model requires more training data than the RNN-based model, and the RNN-based model sometimes achieves better accuracy than the Transformer model when the corpus is small. %R 10.18653/v1/W18-6421 %U https://aclanthology.org/W18-6421 %U https://doi.org/10.18653/v1/W18-6421 %P 461-466
Markdown (Informal)
[NTT’s Neural Machine Translation Systems for WMT 2018](https://aclanthology.org/W18-6421) (Morishita et al., WMT 2018)
- NTT’s Neural Machine Translation Systems for WMT 2018 (Morishita et al., WMT 2018)
ACL
- Makoto Morishita, Jun Suzuki, and Masaaki Nagata. 2018. NTT’s Neural Machine Translation Systems for WMT 2018. In Proceedings of the Third Conference on Machine Translation: Shared Task Papers, pages 461–466, Belgium, Brussels. Association for Computational Linguistics.