Abstract
We present our experiments in the scope of the news translation task in WMT 2018, in directions: English→German. The core of our systems is the encoder-decoder based neural machine translation models using the transformer architecture. We enhanced the model with a deeper architecture. By using techniques to limit the memory consumption, we were able to train models that are 4 times larger on one GPU and improve the performance by 1.2 BLEU points. Furthermore, we performed sentence selection for the newly available ParaCrawl corpus. Thereby, we could improve the effectiveness of the corpus by 0.5 BLEU points.- Anthology ID:
- W18-6422
- Volume:
- Proceedings of the Third Conference on Machine Translation: Shared Task Papers
- Month:
- October
- Year:
- 2018
- Address:
- Belgium, Brussels
- Editors:
- Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Mark Fishel, Yvette Graham, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, Christof Monz, Matteo Negri, Aurélie Névéol, Mariana Neves, Matt Post, Lucia Specia, Marco Turchi, Karin Verspoor
- Venue:
- WMT
- SIG:
- SIGMT
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 467–472
- Language:
- URL:
- https://aclanthology.org/W18-6422
- DOI:
- 10.18653/v1/W18-6422
- Bibkey:
- Cite (ACL):
- Ngoc-Quan Pham, Jan Niehues, and Alexander Waibel. 2018. The Karlsruhe Institute of Technology Systems for the News Translation Task in WMT 2018. In Proceedings of the Third Conference on Machine Translation: Shared Task Papers, pages 467–472, Belgium, Brussels. Association for Computational Linguistics.
- Cite (Informal):
- The Karlsruhe Institute of Technology Systems for the News Translation Task in WMT 2018 (Pham et al., WMT 2018)
- Copy Citation:
- PDF:
- https://aclanthology.org/W18-6422.pdf
Export citation
@inproceedings{pham-etal-2018-karlsruhe, title = "The Karlsruhe Institute of Technology Systems for the News Translation Task in {WMT} 2018", author = "Pham, Ngoc-Quan and Niehues, Jan and Waibel, Alexander", editor = "Bojar, Ond{\v{r}}ej and Chatterjee, Rajen and Federmann, Christian and Fishel, Mark and Graham, Yvette and Haddow, Barry and Huck, Matthias and Yepes, Antonio Jimeno and Koehn, Philipp and Monz, Christof and Negri, Matteo and N{\'e}v{\'e}ol, Aur{\'e}lie and Neves, Mariana and Post, Matt and Specia, Lucia and Turchi, Marco and Verspoor, Karin", booktitle = "Proceedings of the Third Conference on Machine Translation: Shared Task Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W18-6422", doi = "10.18653/v1/W18-6422", pages = "467--472", abstract = "We present our experiments in the scope of the news translation task in WMT 2018, in directions: English→German. The core of our systems is the encoder-decoder based neural machine translation models using the transformer architecture. We enhanced the model with a deeper architecture. By using techniques to limit the memory consumption, we were able to train models that are 4 times larger on one GPU and improve the performance by 1.2 BLEU points. Furthermore, we performed sentence selection for the newly available ParaCrawl corpus. Thereby, we could improve the effectiveness of the corpus by 0.5 BLEU points.", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="pham-etal-2018-karlsruhe"> <titleInfo> <title>The Karlsruhe Institute of Technology Systems for the News Translation Task in WMT 2018</title> </titleInfo> <name type="personal"> <namePart type="given">Ngoc-Quan</namePart> <namePart type="family">Pham</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Jan</namePart> <namePart type="family">Niehues</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Alexander</namePart> <namePart type="family">Waibel</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2018-10</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the Third Conference on Machine Translation: Shared Task Papers</title> </titleInfo> <name type="personal"> <namePart type="given">Ondřej</namePart> <namePart type="family">Bojar</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Rajen</namePart> <namePart type="family">Chatterjee</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christian</namePart> <namePart type="family">Federmann</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mark</namePart> <namePart type="family">Fishel</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yvette</namePart> <namePart type="family">Graham</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Barry</namePart> <namePart type="family">Haddow</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matthias</namePart> <namePart type="family">Huck</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Antonio</namePart> <namePart type="given">Jimeno</namePart> <namePart type="family">Yepes</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Philipp</namePart> <namePart type="family">Koehn</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christof</namePart> <namePart type="family">Monz</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matteo</namePart> <namePart type="family">Negri</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Aurélie</namePart> <namePart type="family">Névéol</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mariana</namePart> <namePart type="family">Neves</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matt</namePart> <namePart type="family">Post</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Lucia</namePart> <namePart type="family">Specia</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Marco</namePart> <namePart type="family">Turchi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Karin</namePart> <namePart type="family">Verspoor</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>Association for Computational Linguistics</publisher> <place> <placeTerm type="text">Belgium, Brussels</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>We present our experiments in the scope of the news translation task in WMT 2018, in directions: English→German. The core of our systems is the encoder-decoder based neural machine translation models using the transformer architecture. We enhanced the model with a deeper architecture. By using techniques to limit the memory consumption, we were able to train models that are 4 times larger on one GPU and improve the performance by 1.2 BLEU points. Furthermore, we performed sentence selection for the newly available ParaCrawl corpus. Thereby, we could improve the effectiveness of the corpus by 0.5 BLEU points.</abstract> <identifier type="citekey">pham-etal-2018-karlsruhe</identifier> <identifier type="doi">10.18653/v1/W18-6422</identifier> <location> <url>https://aclanthology.org/W18-6422</url> </location> <part> <date>2018-10</date> <extent unit="page"> <start>467</start> <end>472</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T The Karlsruhe Institute of Technology Systems for the News Translation Task in WMT 2018 %A Pham, Ngoc-Quan %A Niehues, Jan %A Waibel, Alexander %Y Bojar, Ondřej %Y Chatterjee, Rajen %Y Federmann, Christian %Y Fishel, Mark %Y Graham, Yvette %Y Haddow, Barry %Y Huck, Matthias %Y Yepes, Antonio Jimeno %Y Koehn, Philipp %Y Monz, Christof %Y Negri, Matteo %Y Névéol, Aurélie %Y Neves, Mariana %Y Post, Matt %Y Specia, Lucia %Y Turchi, Marco %Y Verspoor, Karin %S Proceedings of the Third Conference on Machine Translation: Shared Task Papers %D 2018 %8 October %I Association for Computational Linguistics %C Belgium, Brussels %F pham-etal-2018-karlsruhe %X We present our experiments in the scope of the news translation task in WMT 2018, in directions: English→German. The core of our systems is the encoder-decoder based neural machine translation models using the transformer architecture. We enhanced the model with a deeper architecture. By using techniques to limit the memory consumption, we were able to train models that are 4 times larger on one GPU and improve the performance by 1.2 BLEU points. Furthermore, we performed sentence selection for the newly available ParaCrawl corpus. Thereby, we could improve the effectiveness of the corpus by 0.5 BLEU points. %R 10.18653/v1/W18-6422 %U https://aclanthology.org/W18-6422 %U https://doi.org/10.18653/v1/W18-6422 %P 467-472
Markdown (Informal)
[The Karlsruhe Institute of Technology Systems for the News Translation Task in WMT 2018](https://aclanthology.org/W18-6422) (Pham et al., WMT 2018)
- The Karlsruhe Institute of Technology Systems for the News Translation Task in WMT 2018 (Pham et al., WMT 2018)
ACL
- Ngoc-Quan Pham, Jan Niehues, and Alexander Waibel. 2018. The Karlsruhe Institute of Technology Systems for the News Translation Task in WMT 2018. In Proceedings of the Third Conference on Machine Translation: Shared Task Papers, pages 467–472, Belgium, Brussels. Association for Computational Linguistics.