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Abstract 

Our entry to the parallel corpus 

filtering task uses a two-step strategy.  

The first step uses a series of pragmatic 

hard ‘rules’ to remove the worst 

example sentences.  This first step 

reduces the effective corpus size down 

from the initial 1 billion to 160 million 

tokens. The second step uses four 

different heuristics weighted to 

produce a score that is then used for 

further filtering down to 100 or 10 

million tokens.  Our final system 

produces competitive results without 

requiring excessive fine tuning to the 

exact task or language pair. The first 

step in isolation provides a very fast 

filter that gives most of the gains of the 

final system. 

1 Introduction 

This task asks for applicants to provide a score for 

each sentence pair in a 1-billion-word Machine 

Translation (MT) training corpus that is 

considered to be ‘very noisy’, such that those 

scores can be used to filter the corpus down into 

10 million and 100 million words subsets. The 

quality of the output is measured by BLEU score 

obtained by training standard systems on these 

two subsets of data. 

We consider this task to comprise of two 

primary components, namely (a) removing 

sentences that do not represent good examples of 

translation from one language to the other (‘junk’) 

and (b) distilling the remaining data down to a 

smaller training footprint without losing quality or 

diversity and then attaching scores to those 

sentences. 

These two components are somewhat related; 

however, we chose to use a two-pass system to 

tackle them independently, so our system could be 

used to tackle the two components separately if 

required by a ‘real-world’ use case. 

There are various approaches to this task that 

have previously been reported and we have 

attempted to select the most pragmatically useful 

of these to incorporate into our final system.  Our 

philosophy in choosing what to put into our system 

was to make it as general as possible, such that it 

could be used for other language pairs and different 

datasets, rather than specifically tuning for this 

task.  That then allows us to use the system more 

widely across our efforts in the field of machine 

translation.  We have also chosen to use an array of 

different metrics to produce a final score, rather 

than a single score, to gain the benefits of multiple 

models that approach the problem in different 

ways. 

1.1 Dev Data 

As well as the 1-billion-word corpus to be 

processed, a smaller corpus of paired English-

German data is available as a development set.  

This data comprises the data for the WMT 2018 

news translation task data for German-English 

without the Paracrawl parallel corpus.  This data is 

approximately 130M words, drawn from Europarl, 

Common Crawl, News Commentary and Rapid 

EU Press Release Corpora.  More details of this 

data are available from 

http://www.statmt.org/wmt18/translation-

task.html. 

This data is hereafter referred to as the ‘dev data’. 

2 System Description  

Our filtering system consists of two passes.  The 

first pass uses some hard ‘rules’ to eliminate the 

bulk of the data.  We consider this data to be ‘junk’ 

and score each sentence thus removed with a zero. 

The second pass uses several heuristics we have 

developed to assign scores greater than zero to 
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each sentence pair, with the aim of distilling down 

the data into as rich a subset as possible. 

2.1 Initial ‘rules’ 

The following hard rules are performed 

sequentially on the corpus.  If any sentence ‘fails’ 

a rule it is immediately given a score of 0 and not 

considered for any further portion of our scoring 

system. 

 

Line Length: we follow the ‘length-based 

filtering’ of Khadivi and Ney (2005).  This method 

attempts to catch instances of grossly mistranslated 

sentences using the assumption that sentences in 

different languages will consist of approximately 

the same number of words and removing sentence 

pairs that have widely varying lengths. 

If I and J denote the source and target sentence 

length respectively, sentence pairs are eliminated 

unless all of the following are true:  

6 ∗ I > J and I < 6 ∗ J 
I < 3 or J < 3 or (I < 2.2 ∗ J and J < 2.2 ∗ I) 
I < 10 or J < 10 or (I < 2 ∗ J and J < 2 ∗ I)          (1) 

We sampled these same thresholds on a range of 

other languages and were surprised to see they 

were reasonable without alteration even in quite 

diverse situations, such as agglutinative languages. 

 

Non-translation: following Song et. al. (2014) we 

remove sentence pairs where the source and target 

have a BLEU similarity score greater than 0.6.  

This deals with cases of either untranslated or only 

partially translated sentences. 

 

Language identification: Web crawled corpora 

typically contain many data that are not in the 

language it claims to be.  To try and identify such 

cases we use lang-id (Lui and Baldwin, 2012) to 

identify the most likely language of both the source 

and target sentence and remove the entry if either 

source or target disagrees with the correct label. 

We also tried a different version of this in which 

we used the language probabilities generated by 

langid alongside a threshold instead of a binary 

decision based on the langid 1-best.  With 

appropriate tuning this gave marginal gains, but the 

processing time was increased more than we found 

acceptable so is not used in our target system. 

For languages not supported by pre-trained 

language identification models, we intend to use 

FastText (Joulin et. al, 2017) to train our own. 

We believe this is the part of our rules most 

likely to give false positives.  It was not possible to 

quantify this, but from qualitative judgement of the 

output it appeared to often falsely misjudge 

something as being in an incorrect language, 

particularly short sentences.  Nonetheless our 

experiments show the rule greatly improved 

overall quality of the final corpus, so we believe it 

provides a lot more good than harm. 

 

Character filtering: we expect there to be 

unwanted characters in a noisy corpus – for 

example Denkowski et. al. (2012) filter out all lines 

with invalid Unicode, control characters and 

similar. We approach this in a systematic way, by 

defining a list of characters we deem acceptable for 

each language and only keeping sentences 

containing just those characters.  We create our 

character lists by counting character occurrence in 

the ‘dev data’, sorting on character count and then 

quickly manually scanning through the most 

common characters to generate a final list of 

around 80 characters per language that we deem 

‘acceptable’. 

Our system then eliminates any sentences that 

use any character not in these lists.  This both 

reduces any remaining cases of data in an incorrect 

language and incorrectly parsed markup from the 

web crawlers.  It also reduces the effective 

character set remaining in the training data, which 

in turn reduces the effective vocabulary size of 

resultant MT systems, which we found to be 

beneficial when training modern NMT systems. 

 

Digit matching: numbers, in particular digits, can 

be used to mark well matched sentences, and 

indeed they have been used as such in paired 

corpus alignment (Khadivi and Ney, 2005, Simard 

et. al 1992).  Our system captures this by extracting 

all digits (in this case the characters 0-9) from the 

source and target sentence and eliminating them if 

they differ at all.  This does introduce a small 

number of false positives where one side has the 

number in digits and the other in words (‘1’ vs 

‘one’), but we qualitatively found occurrences of 

this to be small. 

2.2 Scoring Heuristics 

To rank the remaining words, we turned to four 

heuristics we developed and found to be correlated 

with quality of the data. 
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Each heuristic produced a score with a positive 

correlation to data quality (as measured by 

resultant BLEU), which we then scaled to be 

between 0 and 1.  Our submissions were then based 

on weighted averages of those scores, where the 

weights between the different heuristics were 

determined empirically. 

 

Sentence length: We noticed that the sentences in 

the corpus remaining after the rules were applied 

tended to be quite short. We confirmed this by 

comparing the sentence length distribution to that 

in the dev data (Figure 1).  Note that our definition 

of sentence length here is the length of both source 

and target sentence summed, rather than length of 

one or the other. 

These short sentences tended to be indicative of 

‘poor quality’ and so we set up a heuristic to 

encourage longer sentences. In particular we use 

the following formula: 

 

     𝑖𝑓 𝑙𝑒𝑛𝑔𝑡ℎ ≤ 40: 

        𝑠𝑐𝑜𝑟𝑒 =
2 ∗ length

100
 

    𝑒𝑙𝑖𝑓 𝑙𝑒𝑛𝑔𝑡ℎ ≤ 80: 

        𝑠𝑐𝑜𝑟𝑒 = 0.8 ∗
length − 40

200
 

    𝑒𝑙𝑠𝑒: 
        𝑠𝑐𝑜𝑟𝑒 = 1.0  (2) 

We chose to use this relatively simple algorithm 

rather than any more sophisticated fitting 

technique in order to keep the system as general as 

possible.  Any system which attempts to fit the 

exact curve is reliant on a target corpus which goes 

against the spirit of the task.  We do note that we 

would probably not choose to use this heuristic in 

isolation however, as it would then essentially be 

no more than selecting the longest sentences. 

 

Perplexity: perplexity measures have been used to 

filter language modelling corpora with respect to a 

specific domain (Gao et al, 2002; Lin et al., 1997). 

We would expect the same techniques to be 

beneficial here too.  However, in the task 

description we were specifically asked not to use 

metrics related to domain-relatedness.  As with our 

sentence length heuristic we look to mirror the 

overall perplexity statistics of a ‘clean’ corpus 

instead. 

Rather than compare to a specific domain we 

trained a 5-gram using KenLM (Heafield et al, 

2013) on the data itself, measured log(perplexity) 

of each sentence using this self-trained model and 

then did the same on the dev data.  As with the 

sentence length heuristic, we found that the dev 

data displayed a slightly different behavior to the 

corpus being filtered (Figure 2) – in this case the 

overall shape of the graph was similar, peaked at a 

value of 0.82 for negative log perplexity divided by 

sentence length, but the dev data had a sharper 

peak, and the corpus to be filtered had more 

sentences of higher or lower perplexity values. 

Our heuristic therefore upweights sentences 

closer to this peak, to try and match the dev data 

behavior. 

 

Figure 1: Plot of sentence length versus proportion 

of words that appear in sentences of that length, for 

the raw corpus (orange with leftmost peak), the 

corpus after our initial ‘rules’ (blue with central 

peak), and the dev data (grey with rightmost peak). 

With our sentence length heuristic we are trying to 

move the blue line to be closer to the grey one. 
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Figure 2: Plot showing frequency against negative 

log perplexity normalised by sentence length, for 

the corpus after rules were applied (blue, lower 

peak) and dev data (grey, higher peak). With our 

perplexity heuristic we are trying to move the blue 

line to be closer to the grey one. 
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𝑖𝑓 − log(𝑝𝑝𝑙) 𝑝𝑒𝑟 𝑤𝑜𝑟𝑑 ≤ 0.82: 

    𝑠𝑐𝑜𝑟𝑒 = 1 −
(0.82 + log(𝑝𝑝𝑙) 𝑝𝑒𝑟 𝑤𝑜𝑟𝑑)

0.82
 

𝑒𝑙𝑠𝑒: 

    𝑠𝑐𝑜𝑟𝑒 = max (0,1 −
− log(𝑝𝑝𝑙)𝑝𝑒𝑟 𝑤𝑜𝑟𝑑−0.82

3
) (3) 

Diversity: following Song et. al (2014) we used 

sentence similarity in a rolling buffer to measure 

how diverse a sentence was compared to its 

neighbours. 

Like Song et. al. we used a rolling window of 

200 sentences, however we found that using BLEU 

to measure sentence similarity was too slow for 

practical use with such a large corpus. Instead we 

took a two-step approach, first checking if at least 

half of the words in the two sentences were in 

common.  If so we then used simple edit distance 

to measure how similar the sentences were.  The 

per sentence score derived from this heuristic was 

the minimum Levenshtein edit distance between a 

given sentence and all other sentences in its 200-

sentence window. 

To give this metric more chance of identifying 

similar sentences, we first sorted the entire corpus 

by sentence length, as sentences of similar length 

are more likely to have smaller edit distances. 

This heuristic then effectively assigns high 

scores to sentences that exhibit distinctness to 

others in the corpus, whilst giving low scores to 

sentences that are near duplicates and hence adding 

little new information. 

 

MT filtering: previous work has shown that 

machine translation systems themselves can 

directly be used to filter parallel corpora, either as 

a preprocessing step (Gaspers et. al. 2018) or even 

on the fly as part of the training process (Zhang et. 

al., 2017). 

We therefore train an MT system on the entirety 

of the post-rules corpus.  We then compute the one 

best translation for each sentence.  Finally, we 

compute the decoder cost of both the one best 

translation and the reference translation.  The 

decoder cost in this case is the cross-entropy loss.  

We did not normalize by sentence length as we 

found it made little difference. 

The raw decoder cost of the reference 

translation by itself is an initially interesting 

metric, as low values correspond to sentences that 

are more likely to be correct translations as they 

don’t diverge from what the system would expect 

to see.  However, we also find that this approach 

biases the results towards short sentences that are 

very similar to one another, meaning resulting 

corpora lack diversity and fall foul of the rare 

words problem (Luong et. al 2015).  The decoder 

cost of the 1-best translation is therefore used as a 

constraint on this.  Our final score for this heuristic 

is the decoder cost of the reference sentence minus 

the decoder cost of the 1-best.  We then compute 

this number in both translation directions and 

average. 

High values of this derived score represent 

situations where the reference translation is judged 

much less likely than the 1-best by the decoder and 

thus should be discarded as likely junk.  Very low 

scores show that the reference translation agrees 

with the model and are therefore unlikely to be 

junk.  And further than that scores where the target 

has a lower cost than the target indicate explicit 

areas where the model needs to be improved – in 

other words exactly the sorts of inputs that are most 

valuable for the task of training a machine 

translation system. 

We used the tensor2tensor framework to train a 

machine translation system for this scoring 

(Vaswani et al. 2018).  The setup was the same as 

we used for benchmarking, as described in Section 

3. 

3 Benchmarking 

To benchmark our progress, we use the 

tensor2tensor system (Vaswani et. al. 2018) which 

reports world leading results on machine 

translation tasks at present.  We took the most 

recent commit of the code (at the time) from 

https://github.com/tensorflow/tensor2tensor/com

mit/99750c4b and used it without alteration. 

We use this system without attempting to tune 

hyperparameters, except that we use the predefined 

‘transformer_small’ recipe from the code 

repository (rather than the default 

‘transformer_base’), for speed and memory 

reasons.  The ‘transformer_small’ recipe uses two 

hidden layers, each of size 256 and 4 attention 

heads.  We trained each system for 500k steps (we 

found training for more steps was not helpful for 

performance) then averaged the last 8 checkpoints.   

All BLEU scores reported used the described 

filtering system to prepare the training data, and 

then benchmark a trained transformer_small 

against the ‘newstest2016’ test set.  BLEU was 

calculated using the t2t-bleu function in 
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tensor2tensor and all reported numbers are on 

uncased text, with no tokenization applied. 

4 Results 

4.1 Initial ‘rules’ 

Using the initial ‘rules’ removed 840 million words 

from the 1-billion-word corpus, leaving 160 

million words for further scoring.  Table 1 shows 

the contribution each rule made to this.  Note that 

by contrast the rules would have removed a much 

smaller, but still significant, proportion of the dev 

data.  This shows both that the rules are effective at 

removing ‘bad’ data (as we assume the 1 billion 

words contains more ‘bad’ data than the dev set) 

and that they are perhaps over aggressive and could 

bear some more tuning. 

The rules were applied sequentially, so the latter 

rules may have removed more words if applied 

directly to the initial corpus. 

Purely using these initial hard rules and then 

randomly selecting from the resulting 160M 

improves BLEU scores vastly compared to 

randomly selecting from the entire 1Bn word 

corpus (Table 2).  For a target corpus size of 10M 

words the BLEU score improves from 5.93 to 

26.14. 

4.2 Scoring Heuristics 

We applied the scoring heuristics described above 

in various combinations on the 160M words 

remaining after our initial ‘rules’. 

When filtering down to 100M words of data, 

any of the heuristics by themselves improved the 

BLEU score by between 0.12-1.67 as compared to 

randomly selecting from the 160M words post- 

‘rules’ (Table 2). Combining them in any 

combination gives further improvements and using 

all of them together gives a total of 1.97 gain in 

BLEU. 

When filtering down to 10M words the picture 

is more complicated.  Two of the heuristics by 

themselves produce worse BLEU scores (sentence 

length and MT scoring) and two improve the 

BLEU scores (perplexity and diversity).  When 

combined equally there is a gain of 5.22, which is 

degraded if any of the metrics are omitted from that 

averaging.  In particular the BLEU is degraded 

significantly if MT scoring is omitted from the 

combination. 

We suspect that the very low scores exhibited in 

the 10M results are more than likely due to 

 1bn word 

corpus 

dev corpus 

Line length 12.3% 6.0% 

Non-translation 8.3% 0.6% 

Language 

identification 

12.0% 1.5% 

Character filtering 24.9% 13.5% 

Digit matching 26.5% 6.3% 

Table 2: Percentages of the 1 billion word and dev 

corpora removed by each of the initial filtering 

rules. 

 

 

Method of filtering data down to target amount 100M 

words 

10M 

words 

Randomly selected sentences from initial 1Bn * 5.93 

Randomly selected sentences from 160M after initial ‘rules’ 31.14 26.14 

Sentence length scoring used to pick best from 160M after ‘rules’ 32.52 17.72 

Perplexity scoring used… 32.81 29.00 

Diversity scoring used… 31.80 28.46 

MT scoring used … 32.26 17.07 

All four heuristics except length used… 32.98 30.47 

All four heuristics except perplexity used… 32.69 30.97 

All four heuristics except diversity used… 32.71 30.34 

All four heuristics except MT used… 32.83 17.86 

All four scoring heuristics averaged and used… 33.11 31.36 

Table 1: BLEU scores computed by training a tensor2tensor transformer_small system on 10M and 100M 

samples of data and then testing on newstest2016. The cell marked ‘*’ could not be computed due to memory 

issues with our training setup.  We list columns in terms of number of words in the corpus rather than the 

(perhaps more familiar) number of sentence pairs, as the task demanded we filter to a specific number of words 

rather than sentence pairs. The number of sentence pairs varied in each cell as different filtering techniques led 

to different average sentence lengths.  The 10M corpora varied between 200k and 1M sentence pairs, for 

example, and the 100M corpora between 4M and 10M sentence pairs. 
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pathological failures in training the tensor2tensor 

system, however we were unable to ascertain the 

exact cause and found the numbers were 

reproduceable on multiple runs of training with the 

same setup and data. 

4.3 Discussion 

It is clear that using our initial ‘rules’ offer a 

significant improvement over random selection 

and that the scoring heuristics we have used are all 

capable of adding additional value in sub selecting 

data. 

The sentence length scoring heuristic and the 

initial rules (barring language identification) are by 

some order of magnitude the fastest and simplest 

part of the system.  For an initial look at data we 

would recommend using these before investing 

time into the more compute intensive rules. 

Our entries to the competition were based on the 

balanced scoring across all four heuristics 

(‘speechmatics-best-candidate-balanced-

scoring.txt’), scoring purely based on the MT 

scoring (‘speechmatics-purely-neural-scoring.txt’) 

and a version with asymmetric weights heavily 

skewed towards the MT scoring (‘speechmatics-

prime-neural-scoring.txt’). 

4.4 Further Work 

At present we have not tuned many parameters in 

our system.  For optimal results we would spend 

more time on each of the 9 separate components 

we used for our system to optimize their various 

parameters with respect to final system BLEU. 

For realistic use cases we would also expect that 

domain specific entropy filtering would be hugely 

beneficial, as we have previously found in 

language modelling (Williams et. al. 2015). 

Conceptually we believe that the MT scoring 

heuristic has the most scope for future 

development.  It is also the component most 

closely related to the actual task – translating text. 

Particularly interesting would be investigating its 

efficacy as the model capacity is scaled.  Our belief 

is that some form of system that dynamically 

eliminates text as part of training could end up 

being the optimal approach to filtering out noisy 

parallel data. 

5 Conclusion 

The Speechmatics entry to the parallel corpus 

filtering task comprises a two-step system.  The 

first step applies some simple rules to remove the 

bulk of the poor-quality data from a corpus.  This 

gives most of the gains in terms of BLEU on a final 

trained system.   We then apply four heuristics for 

scoring that give additional BLEU improvements. 

We believe this is a relatively straightforward 

system that can be used across a wide variety of 

language pairs with little alteration to produce high 

quality reduced size MT corpora. 
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