Abstract
A hybrid pipeline comprising rules and machine learning is used to filter a noisy web English-German parallel corpus for the Parallel Corpus Filtering task. The core of the pipeline is a module based on the logistic regression algorithm that returns the probability that a translation unit is accepted. The training set for the logistic regression is created by automatic annotation. The quality of the automatic annotation is estimated by manually labeling the training set.- Anthology ID:
- W18-6474
- Volume:
- Proceedings of the Third Conference on Machine Translation: Shared Task Papers
- Month:
- October
- Year:
- 2018
- Address:
- Belgium, Brussels
- Editors:
- Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Mark Fishel, Yvette Graham, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, Christof Monz, Matteo Negri, Aurélie Névéol, Mariana Neves, Matt Post, Lucia Specia, Marco Turchi, Karin Verspoor
- Venue:
- WMT
- SIG:
- SIGMT
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 867–871
- Language:
- URL:
- https://aclanthology.org/W18-6474
- DOI:
- 10.18653/v1/W18-6474
- Bibkey:
- Cite (ACL):
- Eduard Barbu and Verginica Barbu Mititelu. 2018. A hybrid pipeline of rules and machine learning to filter web-crawled parallel corpora. In Proceedings of the Third Conference on Machine Translation: Shared Task Papers, pages 867–871, Belgium, Brussels. Association for Computational Linguistics.
- Cite (Informal):
- A hybrid pipeline of rules and machine learning to filter web-crawled parallel corpora (Barbu & Barbu Mititelu, WMT 2018)
- Copy Citation:
- PDF:
- https://aclanthology.org/W18-6474.pdf
Export citation
@inproceedings{barbu-barbu-mititelu-2018-hybrid, title = "A hybrid pipeline of rules and machine learning to filter web-crawled parallel corpora", author = "Barbu, Eduard and Barbu Mititelu, Verginica", editor = "Bojar, Ond{\v{r}}ej and Chatterjee, Rajen and Federmann, Christian and Fishel, Mark and Graham, Yvette and Haddow, Barry and Huck, Matthias and Yepes, Antonio Jimeno and Koehn, Philipp and Monz, Christof and Negri, Matteo and N{\'e}v{\'e}ol, Aur{\'e}lie and Neves, Mariana and Post, Matt and Specia, Lucia and Turchi, Marco and Verspoor, Karin", booktitle = "Proceedings of the Third Conference on Machine Translation: Shared Task Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W18-6474", doi = "10.18653/v1/W18-6474", pages = "867--871", abstract = "A hybrid pipeline comprising rules and machine learning is used to filter a noisy web English-German parallel corpus for the Parallel Corpus Filtering task. The core of the pipeline is a module based on the logistic regression algorithm that returns the probability that a translation unit is accepted. The training set for the logistic regression is created by automatic annotation. The quality of the automatic annotation is estimated by manually labeling the training set.", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="barbu-barbu-mititelu-2018-hybrid"> <titleInfo> <title>A hybrid pipeline of rules and machine learning to filter web-crawled parallel corpora</title> </titleInfo> <name type="personal"> <namePart type="given">Eduard</namePart> <namePart type="family">Barbu</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Verginica</namePart> <namePart type="family">Barbu Mititelu</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2018-10</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the Third Conference on Machine Translation: Shared Task Papers</title> </titleInfo> <name type="personal"> <namePart type="given">Ondřej</namePart> <namePart type="family">Bojar</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Rajen</namePart> <namePart type="family">Chatterjee</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christian</namePart> <namePart type="family">Federmann</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mark</namePart> <namePart type="family">Fishel</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yvette</namePart> <namePart type="family">Graham</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Barry</namePart> <namePart type="family">Haddow</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matthias</namePart> <namePart type="family">Huck</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Antonio</namePart> <namePart type="given">Jimeno</namePart> <namePart type="family">Yepes</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Philipp</namePart> <namePart type="family">Koehn</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christof</namePart> <namePart type="family">Monz</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matteo</namePart> <namePart type="family">Negri</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Aurélie</namePart> <namePart type="family">Névéol</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mariana</namePart> <namePart type="family">Neves</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matt</namePart> <namePart type="family">Post</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Lucia</namePart> <namePart type="family">Specia</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Marco</namePart> <namePart type="family">Turchi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Karin</namePart> <namePart type="family">Verspoor</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>Association for Computational Linguistics</publisher> <place> <placeTerm type="text">Belgium, Brussels</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>A hybrid pipeline comprising rules and machine learning is used to filter a noisy web English-German parallel corpus for the Parallel Corpus Filtering task. The core of the pipeline is a module based on the logistic regression algorithm that returns the probability that a translation unit is accepted. The training set for the logistic regression is created by automatic annotation. The quality of the automatic annotation is estimated by manually labeling the training set.</abstract> <identifier type="citekey">barbu-barbu-mititelu-2018-hybrid</identifier> <identifier type="doi">10.18653/v1/W18-6474</identifier> <location> <url>https://aclanthology.org/W18-6474</url> </location> <part> <date>2018-10</date> <extent unit="page"> <start>867</start> <end>871</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T A hybrid pipeline of rules and machine learning to filter web-crawled parallel corpora %A Barbu, Eduard %A Barbu Mititelu, Verginica %Y Bojar, Ondřej %Y Chatterjee, Rajen %Y Federmann, Christian %Y Fishel, Mark %Y Graham, Yvette %Y Haddow, Barry %Y Huck, Matthias %Y Yepes, Antonio Jimeno %Y Koehn, Philipp %Y Monz, Christof %Y Negri, Matteo %Y Névéol, Aurélie %Y Neves, Mariana %Y Post, Matt %Y Specia, Lucia %Y Turchi, Marco %Y Verspoor, Karin %S Proceedings of the Third Conference on Machine Translation: Shared Task Papers %D 2018 %8 October %I Association for Computational Linguistics %C Belgium, Brussels %F barbu-barbu-mititelu-2018-hybrid %X A hybrid pipeline comprising rules and machine learning is used to filter a noisy web English-German parallel corpus for the Parallel Corpus Filtering task. The core of the pipeline is a module based on the logistic regression algorithm that returns the probability that a translation unit is accepted. The training set for the logistic regression is created by automatic annotation. The quality of the automatic annotation is estimated by manually labeling the training set. %R 10.18653/v1/W18-6474 %U https://aclanthology.org/W18-6474 %U https://doi.org/10.18653/v1/W18-6474 %P 867-871
Markdown (Informal)
[A hybrid pipeline of rules and machine learning to filter web-crawled parallel corpora](https://aclanthology.org/W18-6474) (Barbu & Barbu Mititelu, WMT 2018)
- A hybrid pipeline of rules and machine learning to filter web-crawled parallel corpora (Barbu & Barbu Mititelu, WMT 2018)
ACL
- Eduard Barbu and Verginica Barbu Mititelu. 2018. A hybrid pipeline of rules and machine learning to filter web-crawled parallel corpora. In Proceedings of the Third Conference on Machine Translation: Shared Task Papers, pages 867–871, Belgium, Brussels. Association for Computational Linguistics.