@inproceedings{rossenbach-etal-2018-rwth,
title = "The {RWTH} {A}achen {U}niversity Filtering System for the {WMT} 2018 Parallel Corpus Filtering Task",
author = "Rossenbach, Nick and
Rosendahl, Jan and
Kim, Yunsu and
Gra{\c{c}}a, Miguel and
Gokrani, Aman and
Ney, Hermann",
booktitle = "Proceedings of the Third Conference on Machine Translation: Shared Task Papers",
month = oct,
year = "2018",
address = "Belgium, Brussels",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-6487",
doi = "10.18653/v1/W18-6487",
pages = "946--954",
abstract = "This paper describes the submission of RWTH Aachen University for the De→En parallel corpus filtering task of the \textit{EMNLP 2018 Third Conference on Machine Translation} (WMT 2018). We use several rule-based, heuristic methods to preselect sentence pairs. These sentence pairs are scored with count-based and neural systems as language and translation models. In addition to single sentence-pair scoring, we further implement a simple redundancy removing heuristic. Our best performing corpus filtering system relies on recurrent neural language models and translation models based on the transformer architecture. A model trained on 10M randomly sampled tokens reaches a performance of 9.2{\%} BLEU on newstest2018. Using our filtering and ranking techniques we achieve 34.8{\%} BLEU.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rossenbach-etal-2018-rwth">
<titleInfo>
<title>The RWTH Aachen University Filtering System for the WMT 2018 Parallel Corpus Filtering Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nick</namePart>
<namePart type="family">Rossenbach</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Rosendahl</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yunsu</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Miguel</namePart>
<namePart type="family">Graça</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aman</namePart>
<namePart type="family">Gokrani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hermann</namePart>
<namePart type="family">Ney</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third Conference on Machine Translation: Shared Task Papers</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Belgium, Brussels</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the submission of RWTH Aachen University for the De→En parallel corpus filtering task of the EMNLP 2018 Third Conference on Machine Translation (WMT 2018). We use several rule-based, heuristic methods to preselect sentence pairs. These sentence pairs are scored with count-based and neural systems as language and translation models. In addition to single sentence-pair scoring, we further implement a simple redundancy removing heuristic. Our best performing corpus filtering system relies on recurrent neural language models and translation models based on the transformer architecture. A model trained on 10M randomly sampled tokens reaches a performance of 9.2% BLEU on newstest2018. Using our filtering and ranking techniques we achieve 34.8% BLEU.</abstract>
<identifier type="citekey">rossenbach-etal-2018-rwth</identifier>
<identifier type="doi">10.18653/v1/W18-6487</identifier>
<location>
<url>https://aclanthology.org/W18-6487</url>
</location>
<part>
<date>2018-10</date>
<extent unit="page">
<start>946</start>
<end>954</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The RWTH Aachen University Filtering System for the WMT 2018 Parallel Corpus Filtering Task
%A Rossenbach, Nick
%A Rosendahl, Jan
%A Kim, Yunsu
%A Graça, Miguel
%A Gokrani, Aman
%A Ney, Hermann
%S Proceedings of the Third Conference on Machine Translation: Shared Task Papers
%D 2018
%8 October
%I Association for Computational Linguistics
%C Belgium, Brussels
%F rossenbach-etal-2018-rwth
%X This paper describes the submission of RWTH Aachen University for the De→En parallel corpus filtering task of the EMNLP 2018 Third Conference on Machine Translation (WMT 2018). We use several rule-based, heuristic methods to preselect sentence pairs. These sentence pairs are scored with count-based and neural systems as language and translation models. In addition to single sentence-pair scoring, we further implement a simple redundancy removing heuristic. Our best performing corpus filtering system relies on recurrent neural language models and translation models based on the transformer architecture. A model trained on 10M randomly sampled tokens reaches a performance of 9.2% BLEU on newstest2018. Using our filtering and ranking techniques we achieve 34.8% BLEU.
%R 10.18653/v1/W18-6487
%U https://aclanthology.org/W18-6487
%U https://doi.org/10.18653/v1/W18-6487
%P 946-954
Markdown (Informal)
[The RWTH Aachen University Filtering System for the WMT 2018 Parallel Corpus Filtering Task](https://aclanthology.org/W18-6487) (Rossenbach et al., WMT 2018)
ACL