@inproceedings{birmingham-etal-2018-adding,
title = "Adding the Third Dimension to Spatial Relation Detection in 2{D} Images",
author = "Birmingham, Brandon and
Muscat, Adrian and
Belz, Anja",
editor = "Krahmer, Emiel and
Gatt, Albert and
Goudbeek, Martijn",
booktitle = "Proceedings of the 11th International Conference on Natural Language Generation",
month = nov,
year = "2018",
address = "Tilburg University, The Netherlands",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-6517",
doi = "10.18653/v1/W18-6517",
pages = "146--151",
abstract = "Detection of spatial relations between objects in images is currently a popular subject in image description research. A range of different language and geometric object features have been used in this context, but methods have not so far used explicit information about the third dimension (depth), except when manually added to annotations. The lack of such information hampers detection of spatial relations that are inherently 3D. In this paper, we use a fully automatic method for creating a depth map of an image and derive several different object-level depth features from it which we add to an existing feature set to test the effect on spatial relation detection. We show that performance increases are obtained from adding depth features in all scenarios tested.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="birmingham-etal-2018-adding">
<titleInfo>
<title>Adding the Third Dimension to Spatial Relation Detection in 2D Images</title>
</titleInfo>
<name type="personal">
<namePart type="given">Brandon</namePart>
<namePart type="family">Birmingham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adrian</namePart>
<namePart type="family">Muscat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anja</namePart>
<namePart type="family">Belz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th International Conference on Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emiel</namePart>
<namePart type="family">Krahmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Albert</namePart>
<namePart type="family">Gatt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martijn</namePart>
<namePart type="family">Goudbeek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tilburg University, The Netherlands</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Detection of spatial relations between objects in images is currently a popular subject in image description research. A range of different language and geometric object features have been used in this context, but methods have not so far used explicit information about the third dimension (depth), except when manually added to annotations. The lack of such information hampers detection of spatial relations that are inherently 3D. In this paper, we use a fully automatic method for creating a depth map of an image and derive several different object-level depth features from it which we add to an existing feature set to test the effect on spatial relation detection. We show that performance increases are obtained from adding depth features in all scenarios tested.</abstract>
<identifier type="citekey">birmingham-etal-2018-adding</identifier>
<identifier type="doi">10.18653/v1/W18-6517</identifier>
<location>
<url>https://aclanthology.org/W18-6517</url>
</location>
<part>
<date>2018-11</date>
<extent unit="page">
<start>146</start>
<end>151</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Adding the Third Dimension to Spatial Relation Detection in 2D Images
%A Birmingham, Brandon
%A Muscat, Adrian
%A Belz, Anja
%Y Krahmer, Emiel
%Y Gatt, Albert
%Y Goudbeek, Martijn
%S Proceedings of the 11th International Conference on Natural Language Generation
%D 2018
%8 November
%I Association for Computational Linguistics
%C Tilburg University, The Netherlands
%F birmingham-etal-2018-adding
%X Detection of spatial relations between objects in images is currently a popular subject in image description research. A range of different language and geometric object features have been used in this context, but methods have not so far used explicit information about the third dimension (depth), except when manually added to annotations. The lack of such information hampers detection of spatial relations that are inherently 3D. In this paper, we use a fully automatic method for creating a depth map of an image and derive several different object-level depth features from it which we add to an existing feature set to test the effect on spatial relation detection. We show that performance increases are obtained from adding depth features in all scenarios tested.
%R 10.18653/v1/W18-6517
%U https://aclanthology.org/W18-6517
%U https://doi.org/10.18653/v1/W18-6517
%P 146-151
Markdown (Informal)
[Adding the Third Dimension to Spatial Relation Detection in 2D Images](https://aclanthology.org/W18-6517) (Birmingham et al., INLG 2018)
ACL