@inproceedings{chali-baghaee-2018-automatic,
title = "Automatic Opinion Question Generation",
author = "Chali, Yllias and
Baghaee, Tina",
editor = "Krahmer, Emiel and
Gatt, Albert and
Goudbeek, Martijn",
booktitle = "Proceedings of the 11th International Conference on Natural Language Generation",
month = nov,
year = "2018",
address = "Tilburg University, The Netherlands",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-6518",
doi = "10.18653/v1/W18-6518",
pages = "152--158",
abstract = "We study the problem of opinion question generation from sentences with the help of community-based question answering systems. For this purpose, we use a sequence to sequence attentional model, and we adopt coverage mechanism to prevent sentences from repeating themselves. Experimental results on the Amazon question/answer dataset show an improvement in automatic evaluation metrics as well as human evaluations from the state-of-the-art question generation systems.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chali-baghaee-2018-automatic">
<titleInfo>
<title>Automatic Opinion Question Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yllias</namePart>
<namePart type="family">Chali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tina</namePart>
<namePart type="family">Baghaee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th International Conference on Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emiel</namePart>
<namePart type="family">Krahmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Albert</namePart>
<namePart type="family">Gatt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martijn</namePart>
<namePart type="family">Goudbeek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tilburg University, The Netherlands</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We study the problem of opinion question generation from sentences with the help of community-based question answering systems. For this purpose, we use a sequence to sequence attentional model, and we adopt coverage mechanism to prevent sentences from repeating themselves. Experimental results on the Amazon question/answer dataset show an improvement in automatic evaluation metrics as well as human evaluations from the state-of-the-art question generation systems.</abstract>
<identifier type="citekey">chali-baghaee-2018-automatic</identifier>
<identifier type="doi">10.18653/v1/W18-6518</identifier>
<location>
<url>https://aclanthology.org/W18-6518</url>
</location>
<part>
<date>2018-11</date>
<extent unit="page">
<start>152</start>
<end>158</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Automatic Opinion Question Generation
%A Chali, Yllias
%A Baghaee, Tina
%Y Krahmer, Emiel
%Y Gatt, Albert
%Y Goudbeek, Martijn
%S Proceedings of the 11th International Conference on Natural Language Generation
%D 2018
%8 November
%I Association for Computational Linguistics
%C Tilburg University, The Netherlands
%F chali-baghaee-2018-automatic
%X We study the problem of opinion question generation from sentences with the help of community-based question answering systems. For this purpose, we use a sequence to sequence attentional model, and we adopt coverage mechanism to prevent sentences from repeating themselves. Experimental results on the Amazon question/answer dataset show an improvement in automatic evaluation metrics as well as human evaluations from the state-of-the-art question generation systems.
%R 10.18653/v1/W18-6518
%U https://aclanthology.org/W18-6518
%U https://doi.org/10.18653/v1/W18-6518
%P 152-158
Markdown (Informal)
[Automatic Opinion Question Generation](https://aclanthology.org/W18-6518) (Chali & Baghaee, INLG 2018)
ACL
- Yllias Chali and Tina Baghaee. 2018. Automatic Opinion Question Generation. In Proceedings of the 11th International Conference on Natural Language Generation, pages 152–158, Tilburg University, The Netherlands. Association for Computational Linguistics.