@inproceedings{chen-etal-2018-modelling,
title = "Modelling Pro-drop with the Rational Speech Acts Model",
author = "Chen, Guanyi and
van Deemter, Kees and
Lin, Chenghua",
editor = "Krahmer, Emiel and
Gatt, Albert and
Goudbeek, Martijn",
booktitle = "Proceedings of the 11th International Conference on Natural Language Generation",
month = nov,
year = "2018",
address = "Tilburg University, The Netherlands",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-6519/",
doi = "10.18653/v1/W18-6519",
pages = "159--164",
abstract = "We extend the classic Referring Expressions Generation task by considering zero pronouns in {\textquotedblleft}pro-drop{\textquotedblright} languages such as Chinese, modelling their use by means of the Bayesian Rational Speech Acts model (Frank and Goodman, 2012). By assuming that highly salient referents are most likely to be referred to by zero pronouns (i.e., pro-drop is more likely for salient referents than the less salient ones), the model offers an attractive explanation of a phenomenon not previously addressed probabilistically."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2018-modelling">
<titleInfo>
<title>Modelling Pro-drop with the Rational Speech Acts Model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Guanyi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kees</namePart>
<namePart type="family">van Deemter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenghua</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th International Conference on Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emiel</namePart>
<namePart type="family">Krahmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Albert</namePart>
<namePart type="family">Gatt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martijn</namePart>
<namePart type="family">Goudbeek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tilburg University, The Netherlands</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We extend the classic Referring Expressions Generation task by considering zero pronouns in “pro-drop” languages such as Chinese, modelling their use by means of the Bayesian Rational Speech Acts model (Frank and Goodman, 2012). By assuming that highly salient referents are most likely to be referred to by zero pronouns (i.e., pro-drop is more likely for salient referents than the less salient ones), the model offers an attractive explanation of a phenomenon not previously addressed probabilistically.</abstract>
<identifier type="citekey">chen-etal-2018-modelling</identifier>
<identifier type="doi">10.18653/v1/W18-6519</identifier>
<location>
<url>https://aclanthology.org/W18-6519/</url>
</location>
<part>
<date>2018-11</date>
<extent unit="page">
<start>159</start>
<end>164</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Modelling Pro-drop with the Rational Speech Acts Model
%A Chen, Guanyi
%A van Deemter, Kees
%A Lin, Chenghua
%Y Krahmer, Emiel
%Y Gatt, Albert
%Y Goudbeek, Martijn
%S Proceedings of the 11th International Conference on Natural Language Generation
%D 2018
%8 November
%I Association for Computational Linguistics
%C Tilburg University, The Netherlands
%F chen-etal-2018-modelling
%X We extend the classic Referring Expressions Generation task by considering zero pronouns in “pro-drop” languages such as Chinese, modelling their use by means of the Bayesian Rational Speech Acts model (Frank and Goodman, 2012). By assuming that highly salient referents are most likely to be referred to by zero pronouns (i.e., pro-drop is more likely for salient referents than the less salient ones), the model offers an attractive explanation of a phenomenon not previously addressed probabilistically.
%R 10.18653/v1/W18-6519
%U https://aclanthology.org/W18-6519/
%U https://doi.org/10.18653/v1/W18-6519
%P 159-164
Markdown (Informal)
[Modelling Pro-drop with the Rational Speech Acts Model](https://aclanthology.org/W18-6519/) (Chen et al., INLG 2018)
ACL
- Guanyi Chen, Kees van Deemter, and Chenghua Lin. 2018. Modelling Pro-drop with the Rational Speech Acts Model. In Proceedings of the 11th International Conference on Natural Language Generation, pages 159–164, Tilburg University, The Netherlands. Association for Computational Linguistics.