@inproceedings{fu-white-2018-lstm,
title = "{LSTM} Hypertagging",
author = "Fu, Reid and
White, Michael",
editor = "Krahmer, Emiel and
Gatt, Albert and
Goudbeek, Martijn",
booktitle = "Proceedings of the 11th International Conference on Natural Language Generation",
month = nov,
year = "2018",
address = "Tilburg University, The Netherlands",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-6528/",
doi = "10.18653/v1/W18-6528",
pages = "210--220",
abstract = "Hypertagging, or supertagging for surface realization, is the process of assigning lexical categories to nodes in an input semantic graph. Previous work has shown that hypertagging significantly increases realization speed and quality by reducing the search space of the realizer. Building on recent work using LSTMs to improve accuracy on supertagging for parsing, we develop an LSTM hypertagging method for OpenCCG, an open source NLP toolkit for CCG. Our results show significant improvements in both hypertagging accuracy and downstream realization performance."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="fu-white-2018-lstm">
<titleInfo>
<title>LSTM Hypertagging</title>
</titleInfo>
<name type="personal">
<namePart type="given">Reid</namePart>
<namePart type="family">Fu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">White</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th International Conference on Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emiel</namePart>
<namePart type="family">Krahmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Albert</namePart>
<namePart type="family">Gatt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martijn</namePart>
<namePart type="family">Goudbeek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tilburg University, The Netherlands</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Hypertagging, or supertagging for surface realization, is the process of assigning lexical categories to nodes in an input semantic graph. Previous work has shown that hypertagging significantly increases realization speed and quality by reducing the search space of the realizer. Building on recent work using LSTMs to improve accuracy on supertagging for parsing, we develop an LSTM hypertagging method for OpenCCG, an open source NLP toolkit for CCG. Our results show significant improvements in both hypertagging accuracy and downstream realization performance.</abstract>
<identifier type="citekey">fu-white-2018-lstm</identifier>
<identifier type="doi">10.18653/v1/W18-6528</identifier>
<location>
<url>https://aclanthology.org/W18-6528/</url>
</location>
<part>
<date>2018-11</date>
<extent unit="page">
<start>210</start>
<end>220</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T LSTM Hypertagging
%A Fu, Reid
%A White, Michael
%Y Krahmer, Emiel
%Y Gatt, Albert
%Y Goudbeek, Martijn
%S Proceedings of the 11th International Conference on Natural Language Generation
%D 2018
%8 November
%I Association for Computational Linguistics
%C Tilburg University, The Netherlands
%F fu-white-2018-lstm
%X Hypertagging, or supertagging for surface realization, is the process of assigning lexical categories to nodes in an input semantic graph. Previous work has shown that hypertagging significantly increases realization speed and quality by reducing the search space of the realizer. Building on recent work using LSTMs to improve accuracy on supertagging for parsing, we develop an LSTM hypertagging method for OpenCCG, an open source NLP toolkit for CCG. Our results show significant improvements in both hypertagging accuracy and downstream realization performance.
%R 10.18653/v1/W18-6528
%U https://aclanthology.org/W18-6528/
%U https://doi.org/10.18653/v1/W18-6528
%P 210-220
Markdown (Informal)
[LSTM Hypertagging](https://aclanthology.org/W18-6528/) (Fu & White, INLG 2018)
ACL
- Reid Fu and Michael White. 2018. LSTM Hypertagging. In Proceedings of the 11th International Conference on Natural Language Generation, pages 210–220, Tilburg University, The Netherlands. Association for Computational Linguistics.