@inproceedings{parde-nielsen-2018-automatically,
title = "Automatically Generating Questions about Novel Metaphors in Literature",
author = "Parde, Natalie and
Nielsen, Rodney",
editor = "Krahmer, Emiel and
Gatt, Albert and
Goudbeek, Martijn",
booktitle = "Proceedings of the 11th International Conference on Natural Language Generation",
month = nov,
year = "2018",
address = "Tilburg University, The Netherlands",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-6533",
doi = "10.18653/v1/W18-6533",
pages = "264--273",
abstract = "The automatic generation of stimulating questions is crucial to the development of intelligent cognitive exercise applications. We developed an approach that generates appropriate \textit{Questioning the Author} queries based on novel metaphors in diverse syntactic relations in literature. We show that the generated questions are comparable to human-generated questions in terms of naturalness, sensibility, and depth, and score slightly higher than human-generated questions in terms of clarity. We also show that questions generated about novel metaphors are rated as cognitively deeper than questions generated about non- or conventional metaphors, providing evidence that metaphor novelty can be leveraged to promote cognitive exercise.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="parde-nielsen-2018-automatically">
<titleInfo>
<title>Automatically Generating Questions about Novel Metaphors in Literature</title>
</titleInfo>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Parde</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rodney</namePart>
<namePart type="family">Nielsen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th International Conference on Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emiel</namePart>
<namePart type="family">Krahmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Albert</namePart>
<namePart type="family">Gatt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martijn</namePart>
<namePart type="family">Goudbeek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tilburg University, The Netherlands</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The automatic generation of stimulating questions is crucial to the development of intelligent cognitive exercise applications. We developed an approach that generates appropriate Questioning the Author queries based on novel metaphors in diverse syntactic relations in literature. We show that the generated questions are comparable to human-generated questions in terms of naturalness, sensibility, and depth, and score slightly higher than human-generated questions in terms of clarity. We also show that questions generated about novel metaphors are rated as cognitively deeper than questions generated about non- or conventional metaphors, providing evidence that metaphor novelty can be leveraged to promote cognitive exercise.</abstract>
<identifier type="citekey">parde-nielsen-2018-automatically</identifier>
<identifier type="doi">10.18653/v1/W18-6533</identifier>
<location>
<url>https://aclanthology.org/W18-6533</url>
</location>
<part>
<date>2018-11</date>
<extent unit="page">
<start>264</start>
<end>273</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Automatically Generating Questions about Novel Metaphors in Literature
%A Parde, Natalie
%A Nielsen, Rodney
%Y Krahmer, Emiel
%Y Gatt, Albert
%Y Goudbeek, Martijn
%S Proceedings of the 11th International Conference on Natural Language Generation
%D 2018
%8 November
%I Association for Computational Linguistics
%C Tilburg University, The Netherlands
%F parde-nielsen-2018-automatically
%X The automatic generation of stimulating questions is crucial to the development of intelligent cognitive exercise applications. We developed an approach that generates appropriate Questioning the Author queries based on novel metaphors in diverse syntactic relations in literature. We show that the generated questions are comparable to human-generated questions in terms of naturalness, sensibility, and depth, and score slightly higher than human-generated questions in terms of clarity. We also show that questions generated about novel metaphors are rated as cognitively deeper than questions generated about non- or conventional metaphors, providing evidence that metaphor novelty can be leveraged to promote cognitive exercise.
%R 10.18653/v1/W18-6533
%U https://aclanthology.org/W18-6533
%U https://doi.org/10.18653/v1/W18-6533
%P 264-273
Markdown (Informal)
[Automatically Generating Questions about Novel Metaphors in Literature](https://aclanthology.org/W18-6533) (Parde & Nielsen, INLG 2018)
ACL