@inproceedings{howcroft-etal-2018-toward,
title = "Toward {B}ayesian Synchronous Tree Substitution Grammars for Sentence Planning",
author = "Howcroft, David M. and
Klakow, Dietrich and
Demberg, Vera",
editor = "Krahmer, Emiel and
Gatt, Albert and
Goudbeek, Martijn",
booktitle = "Proceedings of the 11th International Conference on Natural Language Generation",
month = nov,
year = "2018",
address = "Tilburg University, The Netherlands",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-6546/",
doi = "10.18653/v1/W18-6546",
pages = "391--396",
abstract = "Developing conventional natural language generation systems requires extensive attention from human experts in order to craft complex sets of sentence planning rules. We propose a Bayesian nonparametric approach to learn sentence planning rules by inducing synchronous tree substitution grammars for pairs of text plans and morphosyntactically-specified dependency trees. Our system is able to learn rules which can be used to generate novel texts after training on small datasets."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="howcroft-etal-2018-toward">
<titleInfo>
<title>Toward Bayesian Synchronous Tree Substitution Grammars for Sentence Planning</title>
</titleInfo>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Howcroft</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dietrich</namePart>
<namePart type="family">Klakow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vera</namePart>
<namePart type="family">Demberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th International Conference on Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emiel</namePart>
<namePart type="family">Krahmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Albert</namePart>
<namePart type="family">Gatt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martijn</namePart>
<namePart type="family">Goudbeek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tilburg University, The Netherlands</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Developing conventional natural language generation systems requires extensive attention from human experts in order to craft complex sets of sentence planning rules. We propose a Bayesian nonparametric approach to learn sentence planning rules by inducing synchronous tree substitution grammars for pairs of text plans and morphosyntactically-specified dependency trees. Our system is able to learn rules which can be used to generate novel texts after training on small datasets.</abstract>
<identifier type="citekey">howcroft-etal-2018-toward</identifier>
<identifier type="doi">10.18653/v1/W18-6546</identifier>
<location>
<url>https://aclanthology.org/W18-6546/</url>
</location>
<part>
<date>2018-11</date>
<extent unit="page">
<start>391</start>
<end>396</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Toward Bayesian Synchronous Tree Substitution Grammars for Sentence Planning
%A Howcroft, David M.
%A Klakow, Dietrich
%A Demberg, Vera
%Y Krahmer, Emiel
%Y Gatt, Albert
%Y Goudbeek, Martijn
%S Proceedings of the 11th International Conference on Natural Language Generation
%D 2018
%8 November
%I Association for Computational Linguistics
%C Tilburg University, The Netherlands
%F howcroft-etal-2018-toward
%X Developing conventional natural language generation systems requires extensive attention from human experts in order to craft complex sets of sentence planning rules. We propose a Bayesian nonparametric approach to learn sentence planning rules by inducing synchronous tree substitution grammars for pairs of text plans and morphosyntactically-specified dependency trees. Our system is able to learn rules which can be used to generate novel texts after training on small datasets.
%R 10.18653/v1/W18-6546
%U https://aclanthology.org/W18-6546/
%U https://doi.org/10.18653/v1/W18-6546
%P 391-396
Markdown (Informal)
[Toward Bayesian Synchronous Tree Substitution Grammars for Sentence Planning](https://aclanthology.org/W18-6546/) (Howcroft et al., INLG 2018)
ACL