@inproceedings{kuptavanich-etal-2018-generating,
title = "Generating Summaries of Sets of Consumer Products: Learning from Experiments",
author = "Kuptavanich, Kittipitch and
Reiter, Ehud and
Van Deemter, Kees and
Siddharthan, Advaith",
editor = "Krahmer, Emiel and
Gatt, Albert and
Goudbeek, Martijn",
booktitle = "Proceedings of the 11th International Conference on Natural Language Generation",
month = nov,
year = "2018",
address = "Tilburg University, The Netherlands",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-6548/",
doi = "10.18653/v1/W18-6548",
pages = "403--407",
abstract = "We explored the task of creating a textual summary describing a large set of objects characterised by a small number of features using an e-commerce dataset. When a set of consumer products is large and varied, it can be difficult for a consumer to understand how the products in the set differ; consequently, it can be challenging to choose the most suitable product from the set. To assist consumers, we generated high-level summaries of product sets. Two generation algorithms are presented, discussed, and evaluated with human users. Our evaluation results suggest a positive contribution to consumers' understanding of the domain."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kuptavanich-etal-2018-generating">
<titleInfo>
<title>Generating Summaries of Sets of Consumer Products: Learning from Experiments</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kittipitch</namePart>
<namePart type="family">Kuptavanich</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ehud</namePart>
<namePart type="family">Reiter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kees</namePart>
<namePart type="family">Van Deemter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Advaith</namePart>
<namePart type="family">Siddharthan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th International Conference on Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emiel</namePart>
<namePart type="family">Krahmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Albert</namePart>
<namePart type="family">Gatt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martijn</namePart>
<namePart type="family">Goudbeek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tilburg University, The Netherlands</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We explored the task of creating a textual summary describing a large set of objects characterised by a small number of features using an e-commerce dataset. When a set of consumer products is large and varied, it can be difficult for a consumer to understand how the products in the set differ; consequently, it can be challenging to choose the most suitable product from the set. To assist consumers, we generated high-level summaries of product sets. Two generation algorithms are presented, discussed, and evaluated with human users. Our evaluation results suggest a positive contribution to consumers’ understanding of the domain.</abstract>
<identifier type="citekey">kuptavanich-etal-2018-generating</identifier>
<identifier type="doi">10.18653/v1/W18-6548</identifier>
<location>
<url>https://aclanthology.org/W18-6548/</url>
</location>
<part>
<date>2018-11</date>
<extent unit="page">
<start>403</start>
<end>407</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Generating Summaries of Sets of Consumer Products: Learning from Experiments
%A Kuptavanich, Kittipitch
%A Reiter, Ehud
%A Van Deemter, Kees
%A Siddharthan, Advaith
%Y Krahmer, Emiel
%Y Gatt, Albert
%Y Goudbeek, Martijn
%S Proceedings of the 11th International Conference on Natural Language Generation
%D 2018
%8 November
%I Association for Computational Linguistics
%C Tilburg University, The Netherlands
%F kuptavanich-etal-2018-generating
%X We explored the task of creating a textual summary describing a large set of objects characterised by a small number of features using an e-commerce dataset. When a set of consumer products is large and varied, it can be difficult for a consumer to understand how the products in the set differ; consequently, it can be challenging to choose the most suitable product from the set. To assist consumers, we generated high-level summaries of product sets. Two generation algorithms are presented, discussed, and evaluated with human users. Our evaluation results suggest a positive contribution to consumers’ understanding of the domain.
%R 10.18653/v1/W18-6548
%U https://aclanthology.org/W18-6548/
%U https://doi.org/10.18653/v1/W18-6548
%P 403-407
Markdown (Informal)
[Generating Summaries of Sets of Consumer Products: Learning from Experiments](https://aclanthology.org/W18-6548/) (Kuptavanich et al., INLG 2018)
ACL