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Abstract

Sequence-to-sequence models have shown
strong performance in a wide range of
NLP tasks, yet their applications to sen-
tence generation from logical represen-
tations are underdeveloped. In this pa-
per, we present a sequence-to-sequence
model for generating sentences from log-
ical meaning representations based on
event semantics. We use a semantic pars-
ing system based on Combinatory Cat-
egorial Grammar (CCG) to obtain data
annotated with logical formulas. We
augment our sequence-to-sequence model
with masking for predicates to constrain
output sentences. We also propose a novel
evaluation method for generation using
Recognizing Textual Entailment (RTE).
Combining parsing and generation, we test
whether or not the output sentence en-
tails the original text and vice versa. Ex-
periments showed that our model outper-
formed a baseline with respect to both
BLEU scores and accuracies in RTE.

1 Introduction

In recent years, syntactic and semantic parsing
has been developed and improved significantly.
Syntactic parsing based on syntactic theories has
been accomplishing reasonable accuracy to sup-
port various application tasks (Clark and Cur-
ran, 2007; Lewis and Steedman, 2014; Yoshikawa
et al., 2017). Mapping sentences to logical formu-
las automatically has also been studied in depth,
so there are semantic parsing systems that can
produce high quality formulas (Bos, 2008, 2015;
Martı́nez-Gómez et al., 2016).

∗This work was done prior to joining Amazon.

One advantage of using logical formulas in se-
mantic parsing is that they have expressive power
that goes beyond simple representations such as
predicate-argument structures. More specifically,
logical formulas can capture aspects of sentence
meanings that arise from complex syntactic struc-
tures such as coordination, functional words such
as negation and quantifiers, and the scope of in-
teractions between them (Steedman, 2000, 2012).
In combination with the restricted use of higher-
order logic (HOL) developed in formal semantics,
those logical formulas have recently been used for
RTE (Mineshima et al., 2015; Abzianidze, 2015)
and Semantic Textual Similarity (STS) (Yanaka
et al., 2017) and achieved high accuracy.

Compared with these recent developments in
syntactic and semantic parsing, automatic gener-
ation of sentences from expressive logical formu-
las has received relatively less attention, despite
a long and venerable tradition of work on sur-
face realization, including those based on Mini-
mal Recursion Semantics (MRS) (Carroll et al.,
1999; Carroll and Oepen, 2005) and CCG (White,
2006; White and Rajkumar, 2009). If one can gen-
erate sentences from formulas, it would be pos-
sible to perform other NLP tasks in combination
with RTE, including those challenging tasks such
as paraphrase extraction (Levy et al., 2016) and
sentence splitting and rephrasing (Narayan et al.,
2017; Aharoni and Goldberg, 2018).

Meanwhile, sequence-to-sequence models
showed high performance in machine translation
and many other areas in NLP (Sutskever et al.,
2014), yet their applications to sentence gener-
ation from logical meaning representations are
still underdeveloped, mainly due to a lack of
data and the structural complexity of meaning
representations (Konstas et al., 2017). To address
this challenge, we introduce a first sequence-to-
sequence model for sentence generation from
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logical formulas. We use the semantic parsing
system ccg2lambda (Martı́nez-Gómez et al.,
2016)1 to obtain data annotated with logical
formulas including higher-order ones. Since the
distinction between content words and function
words plays an important role in parsing and
generation, we augment the sequence-to-sequence
model with masking for predicates, so that content
words in input logical formulas occur in output
sentences with a list of function words utilized in
the parsing system.

We also propose a novel evaluation method for
sentence generation. BLEU (Papineni et al., 2002)
is widely used to evaluate the quality of decoded
sentences, but it has difficulties in assessing fine-
grained meaning relations between sentences. In-
stead, we use an RTE system for evaluation. We
test whether or not the output sentence entails
the original text and vice versa. This idea is
motivated by the assumption that unlike surface-
based methods such as BLEU, textual entailment
is sensitive to syntactic and semantic aspects of
sentences, thus making it possible to distinguish
fine-grained meaning relations between original
and output sentences. RTE has also been shown
to be effective for evaluation of machine transla-
tion (Padó et al., 2009). Experiments show that
our model outperforms a baseline with respect to
both BLEU scores and accuracy in RTE.

2 Background and Related Work

2.1 Input logical formula
For input, we use logical formulas obtained from
ccg2lambda (Martı́nez-Gómez et al., 2016), a
parsing and inference system that can be used for
RTE. This system parses sentences into syntactic
trees based on CCG (Steedman, 2000), a syntac-
tic theory suitable for semantic composition from
syntactic structures. The meaning of each word
is specified using a lambda term. Logical for-
mulas are obtained compositionally, by combin-
ing lambda terms in accordance with the mean-
ing composition rules specified in the CCG tree
and semantic templates. Semantic templates are
defined manually based on formal semantics (Mi-
neshima et al., 2015).

For logical formulas, we use standard Neo-
Davidsonian event semantics (Parsons, 1990). For
instance, the sentence Eddy walked on the green
grass is represented as ∃e.(walk(e) ∧ subj(e) =

1https://github.com/mynlp/ccg2lambda

eddy∧ ∃x.(green(x)∧ grass(x)∧ on(e, x))). In this
semantics, content words such as nouns and verbs
are represented as predicates, and function words
such as determiners, negation, and connectives are
represented as logical operators with scope rela-
tions.

We decided not to include the following linguis-
tic information in the input formulas: the definite–
indefinite and singular–plural distinctions for NPs
and tense and aspect for VPs. The intention is to
normalize these semantic differences, so that the
resulting formulas are easily usable in reasoning
tasks based on RTE, where such fine-grained lin-
guistic distinctions may sometimes make it more
difficult to establish entailment relations between
sentences. While more fine-grained linguistic in-
formation in logical formulas is readily obtainable
by modifying semantic templates, we leave testing
formulas with such additional semantic informa-
tion for future work.

2.2 Related Work

A large amount of work has been done to convert
meaning representations to their surface forms. In
addition to those works mentioned in Section 1,
there has been also a line of work on generat-
ing sentences from meaning representations used
in semantic parsing systems (Wong and Mooney,
2007; Lu et al., 2009). Recently, Mei et al.
(2016) has proposed an end-to-end neural sen-
tence generation model from such meaning rep-
resentations. These studies use datasets annotated
with meaning representations, such as ROBOCUP

(www.robocup.org) and GEOQUERY (Zelle
and Mooney, 1996). However, these meaning rep-
resentations are much simpler than logical formu-
las used in formal semantics in that they do not
contain logical operators such as disjunction and
quantifiers nor variable binding structures in stan-
dard first-order logic.

Recent rule-based approaches to generation us-
ing formal semantics and higher-order logic in-
clude a type-theoretic system based on Grammat-
ical Framework (GF) (Ranta, 2011) and a system
called Treebank Semantics based on event seman-
tics (Butler, 2016).

Closest to our work is the one based on
AMRs (Konstas et al., 2017), which has achieved
high performance in sentence generation using
neural networks from AMR-graphs (Banarescu
et al., 2013). While AMR has been used as an

https://github.com/mynlp/ccg2lambda
www.robocup.org
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intermediate meaning representation for a wide
range of tasks, it has less descriptive power than
standard first-order logic (Bos, 2016). In addition,
current AMRs do not support inference systems
and thus cannot deal with logical inference as han-
dled by RTE systems.

3 Method

We present a sequence-to-sequence model with at-
tention for formula-to-sentence conversion.

3.1 Embedding
In using the sequence-to-sequence model, the
point to address is how to linearize logical for-
mulas. We test two ways of embedding: one is
a token-based method where a formula is sepa-
rated by each token (predicate and operator) and
the other is based on graph representations con-
verted from input logical formulas.

The token-based method tokenizes logical ex-
pressions. Below is an example of token-separated
linearization:

[exists, e, (, walk, (, e, ),&,Subj, (, e, ), ...]

On the other hand, a graph representation re-
flects the structure of a logical formula. We use the
formula-to-graph conversion presented in Wang
et al. (2017). This method converts a formula to a
tree structure and then obtains its graph represen-
tation by identifying the nodes for a same variable
and replacing edges of the tree accordingly. See
Wang et al. (2017) for the detail.

3.2 Sequence-to-Sequence with Attention
Our baseline model is a sequence-to-sequence
with attention mechanism. Let x = (x1, . . . , x|x|)
and y = (y1, . . . , y|y|) be an input formula and an
output sentence, respectively. Then, the probabil-
ity of the sentence y given a formula x is

PΘ(y|x) =

|y|∏
i=1

PΘ(yi|y<i,x),

yi|y<i,x ∼ softmax (f(Θ,y<i,x)), (1)

where y<i denotes the previously generated se-
quence of words at step i, x is the input formula
and Θ are the model parameters. The function f is
defined as

f(Θ,y<i,x) = Wo MLP

([
gi
ci

])
+ bo,

gi = LSTM dec(vT (yi−1),gi−1),

Figure 1: Masking

where MLP is a multi-layer perceptron with tanh
activation, vT (y) is an embedding vector of y, and
ci is a weighted average (attention)

∑|x|
j=1 αijhj of

the hidden vectors hj for each xj , where

αi = softmax (ei),

eij = MLP(gi−1,hj),

hj = LSTM enc(vS(xj),hj−1),

and LSTM enc is an LSTM encoder, which cal-
culates a hidden state hj using embedding vector
vS(xj) and its previous hidden state.

We train the entire model by optimizing the log-
likelihood with respect to the training data.

3.3 Masking
Logical formulas contain predicates for content
words that should invariably appear in decoded
sentences. For instance, in the sentence Eddy
walked on the green grass, its content words are
Eddy, walked, green, and grass, while on and the
are function words. Using ccg2lambda, we obtain
the following formula for this sentence:

exists e.(walk(e) & (Subj(e) = eddy) &

exists x.(green(x) & grass(x) & on(e, x))).

To utilize the information available in a logical
formula, we use a masking vector m ∈ {0, 1}N ,
where N is the size of the output vocabulary,
which zeroes out the probabilities of words that
do not appear in the formula (see Figure 1). Thus,
instead of Eq. 1, we take the element-wise multi-
plication of the softmax probability and mask m
as

yi|y<i ∼m⊗ softmax (f(Θ,y<i,x)).

To construct the masking vector, we use a dic-
tionary that maps a lemma to a list of its inflected
forms, since logical formulas contain only lemma-
tized forms of words. The idea of using a mask-
ing vector can be seen as a simplified method of
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employing a coverage vector, as has been widely
used in a line of work on chart realization by Kay
(1996). Our method provides a simple adaptation
to sequence-to-sequence models. We obtained
the dictionary by applying the lemmatizer imple-
mented in C&C parser (Clark and Curran, 2007)
to all training data used in the experiment.

In the previous example, there is a dictionary
entry that maps walk to the list walk, walks,
walked and walking. We set 1 in m at positions
that correspond to these inflected forms (see dict1
in Figure 1). Additionally, we made functional
words always available at decoding, by using a
predefined list of those words (see dict2 in Fig-
ure 1).

4 Experiment

4.1 Dataset
We create a dataset annotated with logical for-
mulas from the SNLI corpus (Bowman et al.,
2015), a collection of 570,000 English sentence
pairs manually labeled with an entailment rela-
tion. We use 50,000 hypothesis sentences from its
training portion and split them into 42,000, 4,000,
and 4,000 sentences for our training, development,
and test sets, respectively. We map the sentences
into logical formulas using ccg2lambda. We use
C&C parser for converting tokenized sentences
into CCG trees.

Table 1 shows the number of words in the con-
structed corpus (vocab), the max length (max-
len) and average length (ave-len) of sequences
obtained for the token-based (token) and graph-
based methods (graph). Here output shows in-
formation on the output sentences.

As a baseline, we use Treebank Semantics (But-
ler, 2016)2, a rule-based system for parsing and
generation with logical formulas based on event
semantics.

4.2 Evaluation
For evaluation, AMR generation tasks (Konstas
et al., 2017) use BLEU, which does not directly
consider the meaning and structure of a sentence.
For instance, two sentences No one visited the
old man to greet him and Someone visited the old
man to greet him are similar but differ in meaning.
To avoid this problem, we propose an evaluation
method using parsing and RTE. Namely, we first

2http://www.compling.jp/ajb129/
generation.html

vocab max-len ave-len
token 6,822 419 44
graph 6,747 145 17

output 8,875 40 8

Table 1: Information about sequences.

BLEU S1 ⇒ S2 S2 ⇒ S1 S1 ⇔ S2

token 43.0 87.3 87.3 87.3
+mask 60.0 92.3 90.8 89.8

graph 42.2 86.3 90.0 86.3
+mask 50.0 92.5 92.3 90.8

rule 38.3 61.5 62.3 58.8

Table 2: Evaluation results.

parse an input sentence S1 to obtain a formula P
and then generate a sentence S2 from the formula
P . Finally, we check whether S1 entails S2 and
vice versa. Our method based on RTE can detect
differences in meaning in cases like the above.

We measure the accuracy of RTE for unidirec-
tional and bidirectional entailments: S1 ⇒ S2,
S2 ⇒ S1 and S1 ⇔ S2. We use ccg2lambda for
parsing original and generated sentences and prov-
ing entailment relations between them. We use
400 pairs of sentences taken from the test set for
RTE experiments. The inference system outputs
yes (entailment), no (contradiction) or unknown.
The gold answer is set to yes. The parsing and in-
ference system of ccg2lambda achieved high pre-
cision in RTE tasks; Martı́nez-Gómez et al. (2017)
reported that the precision was nearly 100% for the
SICK dataset (Marelli et al., 2014). Thus, a pre-
dicted entailment (yes) judgement can serve as a
reliable measure for evaluating the entailment re-
lation between S1 and S2.

4.3 Results

Table 2 shows BLEU scores and RTE accuracy.
Here, token and graph show the results for a
token-based model with attention and the graph-
based model with attention, respectively, and
+mask means the model with masking. The base-
line is shown by rule, which is the performance of
Treebank Semantics. As shown here, all the mod-
els outperformed the baseline with respect to both
BLEU score and RTE accuracy. For the RTE ac-
curacy, the increase in the score of the graph +
mask model was slightly larger than the increase
for the token + mask model.

Table 3 shows examples of decoded sentences

http://www.compling.jp/ajb129/generation.html
http://www.compling.jp/ajb129/generation.html
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Input sentence (S1) Decoded sentence (S2)
(1) the girls are swimming in the ocean. the girls are swimming in the ocean.
(2) a dog is playing fetch with his owner. a dog is playing fetch with owner.
(3) a man is sitting on the couch. the men are sitting on a couch.
(4) a tall man. the man is tall.
(5) a child is standing. the children are standing together.
(6) there are several people in this picture. people are pictured in a picture.

Table 3: Examples of decoded sentences obtained from the graph + mask model

obtained from the graph + mask model. (1) and
(2) are examples that preserve the form of input
sentences. (3) is an example where singular form
is changed to plural form, as well as articles a
and the. This is because our semantics neutralizes
these distinctions. The decoded sentence is gram-
matically correct, accommodating be-verbs. In
(4), the input is a noun phrase, while the decoded
result is a sentence. Example (5) contains an un-
necessary word together, but the subject is also
changed so that the decoded sentence is meaning-
ful. In example (6), the there-construction in the
input is removed while preserving the same con-
tent.

5 Conclusion

To our knowledge, this is the first study to de-
scribe a neural sentence generation model from
logical formulas. We also proposed a new eval-
uation method based on RTE. In future work, we
will refine our model for generation of longer sen-
tences and test formulas with richer semantic in-
formation.
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Pascual Martı́nez-Gómez, Koji Mineshima, Yusuke
Miyao, and Daisuke Bekki. 2016. ccg2lambda: A
Compositional Semantics System. In Proceedings
of ACL 2016 System Demonstrations, pages 85–90.
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