@inproceedings{puzikov-gurevych-2018-e2e,
title = "{E}2{E} {NLG} Challenge: Neural Models vs. Templates",
author = "Puzikov, Yevgeniy and
Gurevych, Iryna",
editor = "Krahmer, Emiel and
Gatt, Albert and
Goudbeek, Martijn",
booktitle = "Proceedings of the 11th International Conference on Natural Language Generation",
month = nov,
year = "2018",
address = "Tilburg University, The Netherlands",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-6557/",
doi = "10.18653/v1/W18-6557",
pages = "463--471",
abstract = "E2E NLG Challenge is a shared task on generating restaurant descriptions from sets of key-value pairs. This paper describes the results of our participation in the challenge. We develop a simple, yet effective neural encoder-decoder model which produces fluent restaurant descriptions and outperforms a strong baseline. We further analyze the data provided by the organizers and conclude that the task can also be approached with a template-based model developed in just a few hours."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="puzikov-gurevych-2018-e2e">
<titleInfo>
<title>E2E NLG Challenge: Neural Models vs. Templates</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yevgeniy</namePart>
<namePart type="family">Puzikov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th International Conference on Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emiel</namePart>
<namePart type="family">Krahmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Albert</namePart>
<namePart type="family">Gatt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martijn</namePart>
<namePart type="family">Goudbeek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tilburg University, The Netherlands</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>E2E NLG Challenge is a shared task on generating restaurant descriptions from sets of key-value pairs. This paper describes the results of our participation in the challenge. We develop a simple, yet effective neural encoder-decoder model which produces fluent restaurant descriptions and outperforms a strong baseline. We further analyze the data provided by the organizers and conclude that the task can also be approached with a template-based model developed in just a few hours.</abstract>
<identifier type="citekey">puzikov-gurevych-2018-e2e</identifier>
<identifier type="doi">10.18653/v1/W18-6557</identifier>
<location>
<url>https://aclanthology.org/W18-6557/</url>
</location>
<part>
<date>2018-11</date>
<extent unit="page">
<start>463</start>
<end>471</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T E2E NLG Challenge: Neural Models vs. Templates
%A Puzikov, Yevgeniy
%A Gurevych, Iryna
%Y Krahmer, Emiel
%Y Gatt, Albert
%Y Goudbeek, Martijn
%S Proceedings of the 11th International Conference on Natural Language Generation
%D 2018
%8 November
%I Association for Computational Linguistics
%C Tilburg University, The Netherlands
%F puzikov-gurevych-2018-e2e
%X E2E NLG Challenge is a shared task on generating restaurant descriptions from sets of key-value pairs. This paper describes the results of our participation in the challenge. We develop a simple, yet effective neural encoder-decoder model which produces fluent restaurant descriptions and outperforms a strong baseline. We further analyze the data provided by the organizers and conclude that the task can also be approached with a template-based model developed in just a few hours.
%R 10.18653/v1/W18-6557
%U https://aclanthology.org/W18-6557/
%U https://doi.org/10.18653/v1/W18-6557
%P 463-471
Markdown (Informal)
[E2E NLG Challenge: Neural Models vs. Templates](https://aclanthology.org/W18-6557/) (Puzikov & Gurevych, INLG 2018)
ACL
- Yevgeniy Puzikov and Iryna Gurevych. 2018. E2E NLG Challenge: Neural Models vs. Templates. In Proceedings of the 11th International Conference on Natural Language Generation, pages 463–471, Tilburg University, The Netherlands. Association for Computational Linguistics.