@inproceedings{smiley-etal-2018-e2e,
title = "The {E}2{E} {NLG} Challenge: A Tale of Two Systems",
author = "Smiley, Charese and
Davoodi, Elnaz and
Song, Dezhao and
Schilder, Frank",
editor = "Krahmer, Emiel and
Gatt, Albert and
Goudbeek, Martijn",
booktitle = "Proceedings of the 11th International Conference on Natural Language Generation",
month = nov,
year = "2018",
address = "Tilburg University, The Netherlands",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-6558/",
doi = "10.18653/v1/W18-6558",
pages = "472--477",
abstract = "This paper presents the two systems we entered into the 2017 E2E NLG Challenge: TemplGen, a templated-based system and SeqGen, a neural network-based system. Through the automatic evaluation, SeqGen achieved competitive results compared to the template-based approach and to other participating systems as well. In addition to the automatic evaluation, in this paper we present and discuss the human evaluation results of our two systems."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="smiley-etal-2018-e2e">
<titleInfo>
<title>The E2E NLG Challenge: A Tale of Two Systems</title>
</titleInfo>
<name type="personal">
<namePart type="given">Charese</namePart>
<namePart type="family">Smiley</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elnaz</namePart>
<namePart type="family">Davoodi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dezhao</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frank</namePart>
<namePart type="family">Schilder</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th International Conference on Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emiel</namePart>
<namePart type="family">Krahmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Albert</namePart>
<namePart type="family">Gatt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martijn</namePart>
<namePart type="family">Goudbeek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tilburg University, The Netherlands</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents the two systems we entered into the 2017 E2E NLG Challenge: TemplGen, a templated-based system and SeqGen, a neural network-based system. Through the automatic evaluation, SeqGen achieved competitive results compared to the template-based approach and to other participating systems as well. In addition to the automatic evaluation, in this paper we present and discuss the human evaluation results of our two systems.</abstract>
<identifier type="citekey">smiley-etal-2018-e2e</identifier>
<identifier type="doi">10.18653/v1/W18-6558</identifier>
<location>
<url>https://aclanthology.org/W18-6558/</url>
</location>
<part>
<date>2018-11</date>
<extent unit="page">
<start>472</start>
<end>477</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The E2E NLG Challenge: A Tale of Two Systems
%A Smiley, Charese
%A Davoodi, Elnaz
%A Song, Dezhao
%A Schilder, Frank
%Y Krahmer, Emiel
%Y Gatt, Albert
%Y Goudbeek, Martijn
%S Proceedings of the 11th International Conference on Natural Language Generation
%D 2018
%8 November
%I Association for Computational Linguistics
%C Tilburg University, The Netherlands
%F smiley-etal-2018-e2e
%X This paper presents the two systems we entered into the 2017 E2E NLG Challenge: TemplGen, a templated-based system and SeqGen, a neural network-based system. Through the automatic evaluation, SeqGen achieved competitive results compared to the template-based approach and to other participating systems as well. In addition to the automatic evaluation, in this paper we present and discuss the human evaluation results of our two systems.
%R 10.18653/v1/W18-6558
%U https://aclanthology.org/W18-6558/
%U https://doi.org/10.18653/v1/W18-6558
%P 472-477
Markdown (Informal)
[The E2E NLG Challenge: A Tale of Two Systems](https://aclanthology.org/W18-6558/) (Smiley et al., INLG 2018)
ACL
- Charese Smiley, Elnaz Davoodi, Dezhao Song, and Frank Schilder. 2018. The E2E NLG Challenge: A Tale of Two Systems. In Proceedings of the 11th International Conference on Natural Language Generation, pages 472–477, Tilburg University, The Netherlands. Association for Computational Linguistics.