@inproceedings{willemsen-etal-2018-context,
title = "Context-sensitive Natural Language Generation for robot-assisted second language tutoring",
author = "Willemsen, Bram and
de Wit, Jan and
Krahmer, Emiel and
de Haas, Mirjam and
Vogt, Paul",
editor = "Foster, Mary Ellen and
Buschmeier, Hendrik and
Gkatzia, Dimitra",
booktitle = "Proceedings of the Workshop on {NLG} for Human{--}Robot Interaction",
month = nov,
year = "2018",
address = "Tilburg, The Netherlands",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-6901",
doi = "10.18653/v1/W18-6901",
pages = "1--7",
abstract = "This paper describes the L2TOR intelligent tutoring system (ITS), focusing primarily on its output generation module. The L2TOR ITS is developed for the purpose of investigating the efficacy of robot-assisted second language tutoring in early childhood. We explain the process of generating contextually-relevant utterances, such as task-specific feedback messages, and discuss challenges regarding multimodality and multilingualism for situated natural language generation from a robot tutoring perspective.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="willemsen-etal-2018-context">
<titleInfo>
<title>Context-sensitive Natural Language Generation for robot-assisted second language tutoring</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bram</namePart>
<namePart type="family">Willemsen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">de Wit</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emiel</namePart>
<namePart type="family">Krahmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mirjam</namePart>
<namePart type="family">de Haas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Vogt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on NLG for Human–Robot Interaction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mary</namePart>
<namePart type="given">Ellen</namePart>
<namePart type="family">Foster</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hendrik</namePart>
<namePart type="family">Buschmeier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dimitra</namePart>
<namePart type="family">Gkatzia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tilburg, The Netherlands</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the L2TOR intelligent tutoring system (ITS), focusing primarily on its output generation module. The L2TOR ITS is developed for the purpose of investigating the efficacy of robot-assisted second language tutoring in early childhood. We explain the process of generating contextually-relevant utterances, such as task-specific feedback messages, and discuss challenges regarding multimodality and multilingualism for situated natural language generation from a robot tutoring perspective.</abstract>
<identifier type="citekey">willemsen-etal-2018-context</identifier>
<identifier type="doi">10.18653/v1/W18-6901</identifier>
<location>
<url>https://aclanthology.org/W18-6901</url>
</location>
<part>
<date>2018-11</date>
<extent unit="page">
<start>1</start>
<end>7</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Context-sensitive Natural Language Generation for robot-assisted second language tutoring
%A Willemsen, Bram
%A de Wit, Jan
%A Krahmer, Emiel
%A de Haas, Mirjam
%A Vogt, Paul
%Y Foster, Mary Ellen
%Y Buschmeier, Hendrik
%Y Gkatzia, Dimitra
%S Proceedings of the Workshop on NLG for Human–Robot Interaction
%D 2018
%8 November
%I Association for Computational Linguistics
%C Tilburg, The Netherlands
%F willemsen-etal-2018-context
%X This paper describes the L2TOR intelligent tutoring system (ITS), focusing primarily on its output generation module. The L2TOR ITS is developed for the purpose of investigating the efficacy of robot-assisted second language tutoring in early childhood. We explain the process of generating contextually-relevant utterances, such as task-specific feedback messages, and discuss challenges regarding multimodality and multilingualism for situated natural language generation from a robot tutoring perspective.
%R 10.18653/v1/W18-6901
%U https://aclanthology.org/W18-6901
%U https://doi.org/10.18653/v1/W18-6901
%P 1-7
Markdown (Informal)
[Context-sensitive Natural Language Generation for robot-assisted second language tutoring](https://aclanthology.org/W18-6901) (Willemsen et al., INLG 2018)
ACL