@inproceedings{belakova-gkatzia-2018-learning,
title = "Learning from limited datasets: Implications for Natural Language Generation and Human-Robot Interaction",
author = "Belakova, Jekaterina and
Gkatzia, Dimitra",
editor = "Foster, Mary Ellen and
Buschmeier, Hendrik and
Gkatzia, Dimitra",
booktitle = "Proceedings of the Workshop on {NLG} for Human{--}Robot Interaction",
month = nov,
year = "2018",
address = "Tilburg, The Netherlands",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-6902",
doi = "10.18653/v1/W18-6902",
pages = "8--11",
abstract = "One of the most natural ways for human robot communication is through spoken language. Training human-robot interaction systems require access to large datasets which are expensive to obtain and labour intensive. In this paper, we describe an approach for learning from minimal data, using as a toy example language understanding in spoken dialogue systems. Understanding of spoken language is crucial because it has implications for natural language generation, i.e. correctly understanding a user{'}s utterance will lead to choosing the right response/action. Finally, we discuss implications for Natural Language Generation in Human-Robot Interaction.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="belakova-gkatzia-2018-learning">
<titleInfo>
<title>Learning from limited datasets: Implications for Natural Language Generation and Human-Robot Interaction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jekaterina</namePart>
<namePart type="family">Belakova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dimitra</namePart>
<namePart type="family">Gkatzia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on NLG for Human–Robot Interaction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mary</namePart>
<namePart type="given">Ellen</namePart>
<namePart type="family">Foster</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hendrik</namePart>
<namePart type="family">Buschmeier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dimitra</namePart>
<namePart type="family">Gkatzia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tilburg, The Netherlands</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>One of the most natural ways for human robot communication is through spoken language. Training human-robot interaction systems require access to large datasets which are expensive to obtain and labour intensive. In this paper, we describe an approach for learning from minimal data, using as a toy example language understanding in spoken dialogue systems. Understanding of spoken language is crucial because it has implications for natural language generation, i.e. correctly understanding a user’s utterance will lead to choosing the right response/action. Finally, we discuss implications for Natural Language Generation in Human-Robot Interaction.</abstract>
<identifier type="citekey">belakova-gkatzia-2018-learning</identifier>
<identifier type="doi">10.18653/v1/W18-6902</identifier>
<location>
<url>https://aclanthology.org/W18-6902</url>
</location>
<part>
<date>2018-11</date>
<extent unit="page">
<start>8</start>
<end>11</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning from limited datasets: Implications for Natural Language Generation and Human-Robot Interaction
%A Belakova, Jekaterina
%A Gkatzia, Dimitra
%Y Foster, Mary Ellen
%Y Buschmeier, Hendrik
%Y Gkatzia, Dimitra
%S Proceedings of the Workshop on NLG for Human–Robot Interaction
%D 2018
%8 November
%I Association for Computational Linguistics
%C Tilburg, The Netherlands
%F belakova-gkatzia-2018-learning
%X One of the most natural ways for human robot communication is through spoken language. Training human-robot interaction systems require access to large datasets which are expensive to obtain and labour intensive. In this paper, we describe an approach for learning from minimal data, using as a toy example language understanding in spoken dialogue systems. Understanding of spoken language is crucial because it has implications for natural language generation, i.e. correctly understanding a user’s utterance will lead to choosing the right response/action. Finally, we discuss implications for Natural Language Generation in Human-Robot Interaction.
%R 10.18653/v1/W18-6902
%U https://aclanthology.org/W18-6902
%U https://doi.org/10.18653/v1/W18-6902
%P 8-11
Markdown (Informal)
[Learning from limited datasets: Implications for Natural Language Generation and Human-Robot Interaction](https://aclanthology.org/W18-6902) (Belakova & Gkatzia, INLG 2018)
ACL