@inproceedings{pomarlan-etal-2018-sensors,
title = "From sensors to sense: Integrated heterogeneous ontologies for Natural Language Generation",
author = "Pomarlan, Mihai and
Porzel, Robert and
Bateman, John and
Malaka, Rainer",
editor = "Foster, Mary Ellen and
Buschmeier, Hendrik and
Gkatzia, Dimitra",
booktitle = "Proceedings of the Workshop on {NLG} for Human{--}Robot Interaction",
month = nov,
year = "2018",
address = "Tilburg, The Netherlands",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-6904",
doi = "10.18653/v1/W18-6904",
pages = "17--21",
abstract = "We propose the combination of a robotics ontology (KnowRob) with a linguistically motivated one (GUM) under the upper ontology DUL. We use the DUL Event, Situation, Description pattern to formalize reasoning techniques to convert between a robot{'}s beliefstate and its linguistic utterances. We plan to employ these techniques to equip robots with a reason-aloud ability, through which they can explain their actions as they perform them, in natural language, at a level of granularity appropriate to the user, their query and the context at hand.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pomarlan-etal-2018-sensors">
<titleInfo>
<title>From sensors to sense: Integrated heterogeneous ontologies for Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mihai</namePart>
<namePart type="family">Pomarlan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robert</namePart>
<namePart type="family">Porzel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="family">Bateman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rainer</namePart>
<namePart type="family">Malaka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on NLG for Human–Robot Interaction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mary</namePart>
<namePart type="given">Ellen</namePart>
<namePart type="family">Foster</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hendrik</namePart>
<namePart type="family">Buschmeier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dimitra</namePart>
<namePart type="family">Gkatzia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tilburg, The Netherlands</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose the combination of a robotics ontology (KnowRob) with a linguistically motivated one (GUM) under the upper ontology DUL. We use the DUL Event, Situation, Description pattern to formalize reasoning techniques to convert between a robot’s beliefstate and its linguistic utterances. We plan to employ these techniques to equip robots with a reason-aloud ability, through which they can explain their actions as they perform them, in natural language, at a level of granularity appropriate to the user, their query and the context at hand.</abstract>
<identifier type="citekey">pomarlan-etal-2018-sensors</identifier>
<identifier type="doi">10.18653/v1/W18-6904</identifier>
<location>
<url>https://aclanthology.org/W18-6904</url>
</location>
<part>
<date>2018-11</date>
<extent unit="page">
<start>17</start>
<end>21</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T From sensors to sense: Integrated heterogeneous ontologies for Natural Language Generation
%A Pomarlan, Mihai
%A Porzel, Robert
%A Bateman, John
%A Malaka, Rainer
%Y Foster, Mary Ellen
%Y Buschmeier, Hendrik
%Y Gkatzia, Dimitra
%S Proceedings of the Workshop on NLG for Human–Robot Interaction
%D 2018
%8 November
%I Association for Computational Linguistics
%C Tilburg, The Netherlands
%F pomarlan-etal-2018-sensors
%X We propose the combination of a robotics ontology (KnowRob) with a linguistically motivated one (GUM) under the upper ontology DUL. We use the DUL Event, Situation, Description pattern to formalize reasoning techniques to convert between a robot’s beliefstate and its linguistic utterances. We plan to employ these techniques to equip robots with a reason-aloud ability, through which they can explain their actions as they perform them, in natural language, at a level of granularity appropriate to the user, their query and the context at hand.
%R 10.18653/v1/W18-6904
%U https://aclanthology.org/W18-6904
%U https://doi.org/10.18653/v1/W18-6904
%P 17-21
Markdown (Informal)
[From sensors to sense: Integrated heterogeneous ontologies for Natural Language Generation](https://aclanthology.org/W18-6904) (Pomarlan et al., INLG 2018)
ACL