@inproceedings{charbonnier-wartena-2019-predicting,
title = "Predicting Word Concreteness and Imagery",
author = "Charbonnier, Jean and
Wartena, Christian",
editor = "Dobnik, Simon and
Chatzikyriakidis, Stergios and
Demberg, Vera",
booktitle = "Proceedings of the 13th International Conference on Computational Semantics - Long Papers",
month = may,
year = "2019",
address = "Gothenburg, Sweden",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-0415/",
doi = "10.18653/v1/W19-0415",
pages = "176--187",
abstract = "Concreteness of words has been studied extensively in psycholinguistic literature. A number of datasets have been created with average values for perceived concreteness of words. We show that we can train a regression model on these data, using word embeddings and morphological features, that can predict these concreteness values with high accuracy. We evaluate the model on 7 publicly available datasets. Only for a few small subsets of these datasets prediction of concreteness values are found in the literature. Our results clearly outperform the reported results for these datasets."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="charbonnier-wartena-2019-predicting">
<titleInfo>
<title>Predicting Word Concreteness and Imagery</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jean</namePart>
<namePart type="family">Charbonnier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Wartena</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Conference on Computational Semantics - Long Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Dobnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stergios</namePart>
<namePart type="family">Chatzikyriakidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vera</namePart>
<namePart type="family">Demberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Gothenburg, Sweden</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Concreteness of words has been studied extensively in psycholinguistic literature. A number of datasets have been created with average values for perceived concreteness of words. We show that we can train a regression model on these data, using word embeddings and morphological features, that can predict these concreteness values with high accuracy. We evaluate the model on 7 publicly available datasets. Only for a few small subsets of these datasets prediction of concreteness values are found in the literature. Our results clearly outperform the reported results for these datasets.</abstract>
<identifier type="citekey">charbonnier-wartena-2019-predicting</identifier>
<identifier type="doi">10.18653/v1/W19-0415</identifier>
<location>
<url>https://aclanthology.org/W19-0415/</url>
</location>
<part>
<date>2019-05</date>
<extent unit="page">
<start>176</start>
<end>187</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Predicting Word Concreteness and Imagery
%A Charbonnier, Jean
%A Wartena, Christian
%Y Dobnik, Simon
%Y Chatzikyriakidis, Stergios
%Y Demberg, Vera
%S Proceedings of the 13th International Conference on Computational Semantics - Long Papers
%D 2019
%8 May
%I Association for Computational Linguistics
%C Gothenburg, Sweden
%F charbonnier-wartena-2019-predicting
%X Concreteness of words has been studied extensively in psycholinguistic literature. A number of datasets have been created with average values for perceived concreteness of words. We show that we can train a regression model on these data, using word embeddings and morphological features, that can predict these concreteness values with high accuracy. We evaluate the model on 7 publicly available datasets. Only for a few small subsets of these datasets prediction of concreteness values are found in the literature. Our results clearly outperform the reported results for these datasets.
%R 10.18653/v1/W19-0415
%U https://aclanthology.org/W19-0415/
%U https://doi.org/10.18653/v1/W19-0415
%P 176-187
Markdown (Informal)
[Predicting Word Concreteness and Imagery](https://aclanthology.org/W19-0415/) (Charbonnier & Wartena, IWCS 2019)
ACL
- Jean Charbonnier and Christian Wartena. 2019. Predicting Word Concreteness and Imagery. In Proceedings of the 13th International Conference on Computational Semantics - Long Papers, pages 176–187, Gothenburg, Sweden. Association for Computational Linguistics.