@inproceedings{shi-demberg-2019-learning,
title = "Learning to Explicitate Connectives with {S}eq2{S}eq Network for Implicit Discourse Relation Classification",
author = "Shi, Wei and
Demberg, Vera",
editor = "Dobnik, Simon and
Chatzikyriakidis, Stergios and
Demberg, Vera",
booktitle = "Proceedings of the 13th International Conference on Computational Semantics - Long Papers",
month = may,
year = "2019",
address = "Gothenburg, Sweden",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-0416/",
doi = "10.18653/v1/W19-0416",
pages = "188--199",
abstract = "Implicit discourse relation classification is one of the most difficult steps in discourse parsing. The difficulty stems from the fact that the coherence relation must be inferred based on the content of the discourse relational arguments. Therefore, an effective encoding of the relational arguments is of crucial importance. We here propose a new model for implicit discourse relation classification, which consists of a classifier, and a sequence-to-sequence model which is trained to generate a representation of the discourse relational arguments by trying to predict the relational arguments including a suitable implicit connective. Training is possible because such implicit connectives have been annotated as part of the PDTB corpus. Along with a memory network, our model could generate more refined representations for the task. And on the now standard 11-way classification, our method outperforms the previous state of the art systems on the PDTB benchmark on multiple settings including cross validation."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shi-demberg-2019-learning">
<titleInfo>
<title>Learning to Explicitate Connectives with Seq2Seq Network for Implicit Discourse Relation Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Shi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vera</namePart>
<namePart type="family">Demberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Conference on Computational Semantics - Long Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Dobnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stergios</namePart>
<namePart type="family">Chatzikyriakidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vera</namePart>
<namePart type="family">Demberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Gothenburg, Sweden</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Implicit discourse relation classification is one of the most difficult steps in discourse parsing. The difficulty stems from the fact that the coherence relation must be inferred based on the content of the discourse relational arguments. Therefore, an effective encoding of the relational arguments is of crucial importance. We here propose a new model for implicit discourse relation classification, which consists of a classifier, and a sequence-to-sequence model which is trained to generate a representation of the discourse relational arguments by trying to predict the relational arguments including a suitable implicit connective. Training is possible because such implicit connectives have been annotated as part of the PDTB corpus. Along with a memory network, our model could generate more refined representations for the task. And on the now standard 11-way classification, our method outperforms the previous state of the art systems on the PDTB benchmark on multiple settings including cross validation.</abstract>
<identifier type="citekey">shi-demberg-2019-learning</identifier>
<identifier type="doi">10.18653/v1/W19-0416</identifier>
<location>
<url>https://aclanthology.org/W19-0416/</url>
</location>
<part>
<date>2019-05</date>
<extent unit="page">
<start>188</start>
<end>199</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning to Explicitate Connectives with Seq2Seq Network for Implicit Discourse Relation Classification
%A Shi, Wei
%A Demberg, Vera
%Y Dobnik, Simon
%Y Chatzikyriakidis, Stergios
%Y Demberg, Vera
%S Proceedings of the 13th International Conference on Computational Semantics - Long Papers
%D 2019
%8 May
%I Association for Computational Linguistics
%C Gothenburg, Sweden
%F shi-demberg-2019-learning
%X Implicit discourse relation classification is one of the most difficult steps in discourse parsing. The difficulty stems from the fact that the coherence relation must be inferred based on the content of the discourse relational arguments. Therefore, an effective encoding of the relational arguments is of crucial importance. We here propose a new model for implicit discourse relation classification, which consists of a classifier, and a sequence-to-sequence model which is trained to generate a representation of the discourse relational arguments by trying to predict the relational arguments including a suitable implicit connective. Training is possible because such implicit connectives have been annotated as part of the PDTB corpus. Along with a memory network, our model could generate more refined representations for the task. And on the now standard 11-way classification, our method outperforms the previous state of the art systems on the PDTB benchmark on multiple settings including cross validation.
%R 10.18653/v1/W19-0416
%U https://aclanthology.org/W19-0416/
%U https://doi.org/10.18653/v1/W19-0416
%P 188-199
Markdown (Informal)
[Learning to Explicitate Connectives with Seq2Seq Network for Implicit Discourse Relation Classification](https://aclanthology.org/W19-0416/) (Shi & Demberg, IWCS 2019)
ACL