@inproceedings{aminian-etal-2019-cross,
title = "Cross-Lingual Transfer of Semantic Roles: From Raw Text to Semantic Roles",
author = "Aminian, Maryam and
Rasooli, Mohammad Sadegh and
Diab, Mona",
editor = "Dobnik, Simon and
Chatzikyriakidis, Stergios and
Demberg, Vera",
booktitle = "Proceedings of the 13th International Conference on Computational Semantics - Long Papers",
month = may,
year = "2019",
address = "Gothenburg, Sweden",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-0417",
doi = "10.18653/v1/W19-0417",
pages = "200--210",
abstract = "We describe a transfer method based on annotation projection to develop a dependency-based semantic role labeling system for languages for which no supervised linguistic information other than parallel data is available. Unlike previous work that presumes the availability of supervised features such as lemmas, part-of-speech tags, and dependency parse trees, we only make use of word and character features. Our deep model considers using character-based representations as well as unsupervised stem embeddings to alleviate the need for supervised features. Our experiments outperform a state-of-the-art method that uses supervised lexico-syntactic features on 6 out of 7 languages in the Universal Proposition Bank.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="aminian-etal-2019-cross">
<titleInfo>
<title>Cross-Lingual Transfer of Semantic Roles: From Raw Text to Semantic Roles</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maryam</namePart>
<namePart type="family">Aminian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Sadegh</namePart>
<namePart type="family">Rasooli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mona</namePart>
<namePart type="family">Diab</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Conference on Computational Semantics - Long Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Dobnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stergios</namePart>
<namePart type="family">Chatzikyriakidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vera</namePart>
<namePart type="family">Demberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Gothenburg, Sweden</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We describe a transfer method based on annotation projection to develop a dependency-based semantic role labeling system for languages for which no supervised linguistic information other than parallel data is available. Unlike previous work that presumes the availability of supervised features such as lemmas, part-of-speech tags, and dependency parse trees, we only make use of word and character features. Our deep model considers using character-based representations as well as unsupervised stem embeddings to alleviate the need for supervised features. Our experiments outperform a state-of-the-art method that uses supervised lexico-syntactic features on 6 out of 7 languages in the Universal Proposition Bank.</abstract>
<identifier type="citekey">aminian-etal-2019-cross</identifier>
<identifier type="doi">10.18653/v1/W19-0417</identifier>
<location>
<url>https://aclanthology.org/W19-0417</url>
</location>
<part>
<date>2019-05</date>
<extent unit="page">
<start>200</start>
<end>210</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cross-Lingual Transfer of Semantic Roles: From Raw Text to Semantic Roles
%A Aminian, Maryam
%A Rasooli, Mohammad Sadegh
%A Diab, Mona
%Y Dobnik, Simon
%Y Chatzikyriakidis, Stergios
%Y Demberg, Vera
%S Proceedings of the 13th International Conference on Computational Semantics - Long Papers
%D 2019
%8 May
%I Association for Computational Linguistics
%C Gothenburg, Sweden
%F aminian-etal-2019-cross
%X We describe a transfer method based on annotation projection to develop a dependency-based semantic role labeling system for languages for which no supervised linguistic information other than parallel data is available. Unlike previous work that presumes the availability of supervised features such as lemmas, part-of-speech tags, and dependency parse trees, we only make use of word and character features. Our deep model considers using character-based representations as well as unsupervised stem embeddings to alleviate the need for supervised features. Our experiments outperform a state-of-the-art method that uses supervised lexico-syntactic features on 6 out of 7 languages in the Universal Proposition Bank.
%R 10.18653/v1/W19-0417
%U https://aclanthology.org/W19-0417
%U https://doi.org/10.18653/v1/W19-0417
%P 200-210
Markdown (Informal)
[Cross-Lingual Transfer of Semantic Roles: From Raw Text to Semantic Roles](https://aclanthology.org/W19-0417) (Aminian et al., IWCS 2019)
ACL