@inproceedings{savle-etal-2019-topological,
title = "Topological Data Analysis for Discourse Semantics?",
author = "Savle, Ketki and
Zadrozny, Wlodek and
Lee, Minwoo",
editor = "Dobnik, Simon and
Chatzikyriakidis, Stergios and
Demberg, Vera and
Abu Kwaik, Kathrein and
Maraev, Vladislav",
booktitle = "Proceedings of the 13th International Conference on Computational Semantics - Student Papers",
month = may,
year = "2019",
address = "Gothenburg, Sweden",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-0605/",
doi = "10.18653/v1/W19-0605",
pages = "34--43",
abstract = "In this paper we present new results on applying topological data analysis to discourse structures. We show that topological information, extracted from the relationships between sentences can be used in inference, namely it can be applied to the very difficult legal entailment given in the COLIEE 2018 data set. Previous results of Doshi and Zadrozny (2018) and Gholizadeh et al. (2018) show that topological features are useful for classification. The applications of computational topology to entailment are novel in our view provide a new set of tools for discourse semantics: computational topology can perhaps provide a bridge between the brittleness of logic and the regression of neural networks. We discuss the advantages and disadvantages of using topological information, and some open problems such as explainability of the classifier decisions."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="savle-etal-2019-topological">
<titleInfo>
<title>Topological Data Analysis for Discourse Semantics?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ketki</namePart>
<namePart type="family">Savle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wlodek</namePart>
<namePart type="family">Zadrozny</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Minwoo</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Conference on Computational Semantics - Student Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Dobnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stergios</namePart>
<namePart type="family">Chatzikyriakidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vera</namePart>
<namePart type="family">Demberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kathrein</namePart>
<namePart type="family">Abu Kwaik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vladislav</namePart>
<namePart type="family">Maraev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Gothenburg, Sweden</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we present new results on applying topological data analysis to discourse structures. We show that topological information, extracted from the relationships between sentences can be used in inference, namely it can be applied to the very difficult legal entailment given in the COLIEE 2018 data set. Previous results of Doshi and Zadrozny (2018) and Gholizadeh et al. (2018) show that topological features are useful for classification. The applications of computational topology to entailment are novel in our view provide a new set of tools for discourse semantics: computational topology can perhaps provide a bridge between the brittleness of logic and the regression of neural networks. We discuss the advantages and disadvantages of using topological information, and some open problems such as explainability of the classifier decisions.</abstract>
<identifier type="citekey">savle-etal-2019-topological</identifier>
<identifier type="doi">10.18653/v1/W19-0605</identifier>
<location>
<url>https://aclanthology.org/W19-0605/</url>
</location>
<part>
<date>2019-05</date>
<extent unit="page">
<start>34</start>
<end>43</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Topological Data Analysis for Discourse Semantics?
%A Savle, Ketki
%A Zadrozny, Wlodek
%A Lee, Minwoo
%Y Dobnik, Simon
%Y Chatzikyriakidis, Stergios
%Y Demberg, Vera
%Y Abu Kwaik, Kathrein
%Y Maraev, Vladislav
%S Proceedings of the 13th International Conference on Computational Semantics - Student Papers
%D 2019
%8 May
%I Association for Computational Linguistics
%C Gothenburg, Sweden
%F savle-etal-2019-topological
%X In this paper we present new results on applying topological data analysis to discourse structures. We show that topological information, extracted from the relationships between sentences can be used in inference, namely it can be applied to the very difficult legal entailment given in the COLIEE 2018 data set. Previous results of Doshi and Zadrozny (2018) and Gholizadeh et al. (2018) show that topological features are useful for classification. The applications of computational topology to entailment are novel in our view provide a new set of tools for discourse semantics: computational topology can perhaps provide a bridge between the brittleness of logic and the regression of neural networks. We discuss the advantages and disadvantages of using topological information, and some open problems such as explainability of the classifier decisions.
%R 10.18653/v1/W19-0605
%U https://aclanthology.org/W19-0605/
%U https://doi.org/10.18653/v1/W19-0605
%P 34-43
Markdown (Informal)
[Topological Data Analysis for Discourse Semantics?](https://aclanthology.org/W19-0605/) (Savle et al., IWCS 2019)
ACL
- Ketki Savle, Wlodek Zadrozny, and Minwoo Lee. 2019. Topological Data Analysis for Discourse Semantics?. In Proceedings of the 13th International Conference on Computational Semantics - Student Papers, pages 34–43, Gothenburg, Sweden. Association for Computational Linguistics.