@inproceedings{kafle-etal-2019-modeling,
title = "Modeling Acoustic-Prosodic Cues for Word Importance Prediction in Spoken Dialogues",
author = "Kafle, Sushant and
Alm, Cissi Ovesdotter and
Huenerfauth, Matt",
editor = "Christensen, Heidi and
Hollingshead, Kristy and
Prud{'}hommeaux, Emily and
Rudzicz, Frank and
Vertanen, Keith",
booktitle = "Proceedings of the Eighth Workshop on Speech and Language Processing for Assistive Technologies",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-1702",
doi = "10.18653/v1/W19-1702",
pages = "9--16",
abstract = "Prosodic cues in conversational speech aid listeners in discerning a message. We investigate whether acoustic cues in spoken dialogue can be used to identify the importance of individual words to the meaning of a conversation turn. Individuals who are Deaf and Hard of Hearing often rely on real-time captions in live meetings. Word error rate, a traditional metric for evaluating automatic speech recognition (ASR), fails to capture that some words are more important for a system to transcribe correctly than others. We present and evaluate neural architectures that use acoustic features for 3-class word importance prediction. Our model performs competitively against state-of-the-art text-based word-importance prediction models, and it demonstrates particular benefits when operating on imperfect ASR output.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kafle-etal-2019-modeling">
<titleInfo>
<title>Modeling Acoustic-Prosodic Cues for Word Importance Prediction in Spoken Dialogues</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sushant</namePart>
<namePart type="family">Kafle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cissi</namePart>
<namePart type="given">Ovesdotter</namePart>
<namePart type="family">Alm</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matt</namePart>
<namePart type="family">Huenerfauth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth Workshop on Speech and Language Processing for Assistive Technologies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Heidi</namePart>
<namePart type="family">Christensen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kristy</namePart>
<namePart type="family">Hollingshead</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="family">Prud’hommeaux</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frank</namePart>
<namePart type="family">Rudzicz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Keith</namePart>
<namePart type="family">Vertanen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Prosodic cues in conversational speech aid listeners in discerning a message. We investigate whether acoustic cues in spoken dialogue can be used to identify the importance of individual words to the meaning of a conversation turn. Individuals who are Deaf and Hard of Hearing often rely on real-time captions in live meetings. Word error rate, a traditional metric for evaluating automatic speech recognition (ASR), fails to capture that some words are more important for a system to transcribe correctly than others. We present and evaluate neural architectures that use acoustic features for 3-class word importance prediction. Our model performs competitively against state-of-the-art text-based word-importance prediction models, and it demonstrates particular benefits when operating on imperfect ASR output.</abstract>
<identifier type="citekey">kafle-etal-2019-modeling</identifier>
<identifier type="doi">10.18653/v1/W19-1702</identifier>
<location>
<url>https://aclanthology.org/W19-1702</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>9</start>
<end>16</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Modeling Acoustic-Prosodic Cues for Word Importance Prediction in Spoken Dialogues
%A Kafle, Sushant
%A Alm, Cissi Ovesdotter
%A Huenerfauth, Matt
%Y Christensen, Heidi
%Y Hollingshead, Kristy
%Y Prud’hommeaux, Emily
%Y Rudzicz, Frank
%Y Vertanen, Keith
%S Proceedings of the Eighth Workshop on Speech and Language Processing for Assistive Technologies
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F kafle-etal-2019-modeling
%X Prosodic cues in conversational speech aid listeners in discerning a message. We investigate whether acoustic cues in spoken dialogue can be used to identify the importance of individual words to the meaning of a conversation turn. Individuals who are Deaf and Hard of Hearing often rely on real-time captions in live meetings. Word error rate, a traditional metric for evaluating automatic speech recognition (ASR), fails to capture that some words are more important for a system to transcribe correctly than others. We present and evaluate neural architectures that use acoustic features for 3-class word importance prediction. Our model performs competitively against state-of-the-art text-based word-importance prediction models, and it demonstrates particular benefits when operating on imperfect ASR output.
%R 10.18653/v1/W19-1702
%U https://aclanthology.org/W19-1702
%U https://doi.org/10.18653/v1/W19-1702
%P 9-16
Markdown (Informal)
[Modeling Acoustic-Prosodic Cues for Word Importance Prediction in Spoken Dialogues](https://aclanthology.org/W19-1702) (Kafle et al., SLPAT 2019)
ACL