@inproceedings{khan-khattak-etal-2019-predicting,
title = "Predicting {ICU} transfers using text messages between nurses and doctors",
author = "Khan Khattak, Faiza and
Pou-Prom, Chlo{\'e} and
Wu, Robert and
Rudzicz, Frank",
editor = "Rumshisky, Anna and
Roberts, Kirk and
Bethard, Steven and
Naumann, Tristan",
booktitle = "Proceedings of the 2nd Clinical Natural Language Processing Workshop",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-1911",
doi = "10.18653/v1/W19-1911",
pages = "89--94",
abstract = "We explore the use of real-time clinical information, i.e., text messages sent between nurses and doctors regarding patient conditions in order to predict transfer to the intensive care unit(ICU). Preliminary results, in data from five hospitals, indicate that, despite being short and full of noise, text messages can augment other visit information to improve the performance of ICU transfer prediction.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="khan-khattak-etal-2019-predicting">
<titleInfo>
<title>Predicting ICU transfers using text messages between nurses and doctors</title>
</titleInfo>
<name type="personal">
<namePart type="given">Faiza</namePart>
<namePart type="family">Khan Khattak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chloé</namePart>
<namePart type="family">Pou-Prom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robert</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frank</namePart>
<namePart type="family">Rudzicz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2nd Clinical Natural Language Processing Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rumshisky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kirk</namePart>
<namePart type="family">Roberts</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tristan</namePart>
<namePart type="family">Naumann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We explore the use of real-time clinical information, i.e., text messages sent between nurses and doctors regarding patient conditions in order to predict transfer to the intensive care unit(ICU). Preliminary results, in data from five hospitals, indicate that, despite being short and full of noise, text messages can augment other visit information to improve the performance of ICU transfer prediction.</abstract>
<identifier type="citekey">khan-khattak-etal-2019-predicting</identifier>
<identifier type="doi">10.18653/v1/W19-1911</identifier>
<location>
<url>https://aclanthology.org/W19-1911</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>89</start>
<end>94</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Predicting ICU transfers using text messages between nurses and doctors
%A Khan Khattak, Faiza
%A Pou-Prom, Chloé
%A Wu, Robert
%A Rudzicz, Frank
%Y Rumshisky, Anna
%Y Roberts, Kirk
%Y Bethard, Steven
%Y Naumann, Tristan
%S Proceedings of the 2nd Clinical Natural Language Processing Workshop
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F khan-khattak-etal-2019-predicting
%X We explore the use of real-time clinical information, i.e., text messages sent between nurses and doctors regarding patient conditions in order to predict transfer to the intensive care unit(ICU). Preliminary results, in data from five hospitals, indicate that, despite being short and full of noise, text messages can augment other visit information to improve the performance of ICU transfer prediction.
%R 10.18653/v1/W19-1911
%U https://aclanthology.org/W19-1911
%U https://doi.org/10.18653/v1/W19-1911
%P 89-94
Markdown (Informal)
[Predicting ICU transfers using text messages between nurses and doctors](https://aclanthology.org/W19-1911) (Khan Khattak et al., ClinicalNLP 2019)
ACL