@inproceedings{fan-2019-annotating,
title = "Annotating and Characterizing Clinical Sentences with Explicit Why-{QA} Cues",
author = "Fan, Jungwei",
editor = "Rumshisky, Anna and
Roberts, Kirk and
Bethard, Steven and
Naumann, Tristan",
booktitle = "Proceedings of the 2nd Clinical Natural Language Processing Workshop",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-1913/",
doi = "10.18653/v1/W19-1913",
pages = "101--106",
abstract = "Many clinical information needs can be stated as why-questions. The answers to them represent important clinical reasoning and justification. Clinical notes are a rich source for such why-question answering (why-QA). However, there are few dedicated corpora, and little is known about the characteristics of clinical why-QA narratives. To address this gap, the study performed manual annotation of 277 sentences containing explicit why-QA cues and summarized their quantitative and qualitative properties. The contributions are: 1) sharing a seed corpus that can be used for various QA-related training purposes, 2) adding to our knowledge about the diversity and distribution of clinical why-QA contents."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="fan-2019-annotating">
<titleInfo>
<title>Annotating and Characterizing Clinical Sentences with Explicit Why-QA Cues</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jungwei</namePart>
<namePart type="family">Fan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2nd Clinical Natural Language Processing Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rumshisky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kirk</namePart>
<namePart type="family">Roberts</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tristan</namePart>
<namePart type="family">Naumann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Many clinical information needs can be stated as why-questions. The answers to them represent important clinical reasoning and justification. Clinical notes are a rich source for such why-question answering (why-QA). However, there are few dedicated corpora, and little is known about the characteristics of clinical why-QA narratives. To address this gap, the study performed manual annotation of 277 sentences containing explicit why-QA cues and summarized their quantitative and qualitative properties. The contributions are: 1) sharing a seed corpus that can be used for various QA-related training purposes, 2) adding to our knowledge about the diversity and distribution of clinical why-QA contents.</abstract>
<identifier type="citekey">fan-2019-annotating</identifier>
<identifier type="doi">10.18653/v1/W19-1913</identifier>
<location>
<url>https://aclanthology.org/W19-1913/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>101</start>
<end>106</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Annotating and Characterizing Clinical Sentences with Explicit Why-QA Cues
%A Fan, Jungwei
%Y Rumshisky, Anna
%Y Roberts, Kirk
%Y Bethard, Steven
%Y Naumann, Tristan
%S Proceedings of the 2nd Clinical Natural Language Processing Workshop
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota, USA
%F fan-2019-annotating
%X Many clinical information needs can be stated as why-questions. The answers to them represent important clinical reasoning and justification. Clinical notes are a rich source for such why-question answering (why-QA). However, there are few dedicated corpora, and little is known about the characteristics of clinical why-QA narratives. To address this gap, the study performed manual annotation of 277 sentences containing explicit why-QA cues and summarized their quantitative and qualitative properties. The contributions are: 1) sharing a seed corpus that can be used for various QA-related training purposes, 2) adding to our knowledge about the diversity and distribution of clinical why-QA contents.
%R 10.18653/v1/W19-1913
%U https://aclanthology.org/W19-1913/
%U https://doi.org/10.18653/v1/W19-1913
%P 101-106
Markdown (Informal)
[Annotating and Characterizing Clinical Sentences with Explicit Why-QA Cues](https://aclanthology.org/W19-1913/) (Fan, ClinicalNLP 2019)
ACL