@inproceedings{romanov-khusainova-2019-evaluation,
title = "Evaluation of Morphological Embeddings for {E}nglish and {R}ussian Languages",
author = "Romanov, Vitaly and
Khusainova, Albina",
editor = "Rogers, Anna and
Drozd, Aleksandr and
Rumshisky, Anna and
Goldberg, Yoav",
booktitle = "Proceedings of the 3rd Workshop on Evaluating Vector Space Representations for {NLP}",
month = jun,
year = "2019",
address = "Minneapolis, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-2010/",
doi = "10.18653/v1/W19-2010",
pages = "77--81",
abstract = "This paper evaluates morphology-based embeddings for English and Russian languages. Despite the interest and introduction of several morphology based word embedding models in the past and acclaimed performance improvements on word similarity and language modeling tasks, in our experiments, we did not observe any stable preference over two of our baseline models - SkipGram and FastText. The performance exhibited by morphological embeddings is the average of the two baselines mentioned above."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="romanov-khusainova-2019-evaluation">
<titleInfo>
<title>Evaluation of Morphological Embeddings for English and Russian Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vitaly</namePart>
<namePart type="family">Romanov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Albina</namePart>
<namePart type="family">Khusainova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 3rd Workshop on Evaluating Vector Space Representations for NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aleksandr</namePart>
<namePart type="family">Drozd</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rumshisky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper evaluates morphology-based embeddings for English and Russian languages. Despite the interest and introduction of several morphology based word embedding models in the past and acclaimed performance improvements on word similarity and language modeling tasks, in our experiments, we did not observe any stable preference over two of our baseline models - SkipGram and FastText. The performance exhibited by morphological embeddings is the average of the two baselines mentioned above.</abstract>
<identifier type="citekey">romanov-khusainova-2019-evaluation</identifier>
<identifier type="doi">10.18653/v1/W19-2010</identifier>
<location>
<url>https://aclanthology.org/W19-2010/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>77</start>
<end>81</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Evaluation of Morphological Embeddings for English and Russian Languages
%A Romanov, Vitaly
%A Khusainova, Albina
%Y Rogers, Anna
%Y Drozd, Aleksandr
%Y Rumshisky, Anna
%Y Goldberg, Yoav
%S Proceedings of the 3rd Workshop on Evaluating Vector Space Representations for NLP
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, USA
%F romanov-khusainova-2019-evaluation
%X This paper evaluates morphology-based embeddings for English and Russian languages. Despite the interest and introduction of several morphology based word embedding models in the past and acclaimed performance improvements on word similarity and language modeling tasks, in our experiments, we did not observe any stable preference over two of our baseline models - SkipGram and FastText. The performance exhibited by morphological embeddings is the average of the two baselines mentioned above.
%R 10.18653/v1/W19-2010
%U https://aclanthology.org/W19-2010/
%U https://doi.org/10.18653/v1/W19-2010
%P 77-81
Markdown (Informal)
[Evaluation of Morphological Embeddings for English and Russian Languages](https://aclanthology.org/W19-2010/) (Romanov & Khusainova, RepEval 2019)
ACL