@inproceedings{mamou-etal-2019-multi,
    title = "Multi-Context Term Embeddings: the Use Case of Corpus-based Term Set Expansion",
    author = "Mamou, Jonathan  and
      Pereg, Oren  and
      Wasserblat, Moshe  and
      Dagan, Ido",
    editor = "Rogers, Anna  and
      Drozd, Aleksandr  and
      Rumshisky, Anna  and
      Goldberg, Yoav",
    booktitle = "Proceedings of the 3rd Workshop on Evaluating Vector Space Representations for {NLP}",
    month = jun,
    year = "2019",
    address = "Minneapolis, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W19-2013/",
    doi = "10.18653/v1/W19-2013",
    pages = "95--101",
    abstract = "In this paper, we present a novel algorithm that combines multi-context term embeddings using a neural classifier and we test this approach on the use case of corpus-based term set expansion. In addition, we present a novel and unique dataset for intrinsic evaluation of corpus-based term set expansion algorithms. We show that, over this dataset, our algorithm provides up to 5 mean average precision points over the best baseline."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mamou-etal-2019-multi">
    <titleInfo>
        <title>Multi-Context Term Embeddings: the Use Case of Corpus-based Term Set Expansion</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Jonathan</namePart>
        <namePart type="family">Mamou</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Oren</namePart>
        <namePart type="family">Pereg</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Moshe</namePart>
        <namePart type="family">Wasserblat</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Ido</namePart>
        <namePart type="family">Dagan</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-06</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 3rd Workshop on Evaluating Vector Space Representations for NLP</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Anna</namePart>
            <namePart type="family">Rogers</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Aleksandr</namePart>
            <namePart type="family">Drozd</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Anna</namePart>
            <namePart type="family">Rumshisky</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Yoav</namePart>
            <namePart type="family">Goldberg</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Minneapolis, USA</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>In this paper, we present a novel algorithm that combines multi-context term embeddings using a neural classifier and we test this approach on the use case of corpus-based term set expansion. In addition, we present a novel and unique dataset for intrinsic evaluation of corpus-based term set expansion algorithms. We show that, over this dataset, our algorithm provides up to 5 mean average precision points over the best baseline.</abstract>
    <identifier type="citekey">mamou-etal-2019-multi</identifier>
    <identifier type="doi">10.18653/v1/W19-2013</identifier>
    <location>
        <url>https://aclanthology.org/W19-2013/</url>
    </location>
    <part>
        <date>2019-06</date>
        <extent unit="page">
            <start>95</start>
            <end>101</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multi-Context Term Embeddings: the Use Case of Corpus-based Term Set Expansion
%A Mamou, Jonathan
%A Pereg, Oren
%A Wasserblat, Moshe
%A Dagan, Ido
%Y Rogers, Anna
%Y Drozd, Aleksandr
%Y Rumshisky, Anna
%Y Goldberg, Yoav
%S Proceedings of the 3rd Workshop on Evaluating Vector Space Representations for NLP
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, USA
%F mamou-etal-2019-multi
%X In this paper, we present a novel algorithm that combines multi-context term embeddings using a neural classifier and we test this approach on the use case of corpus-based term set expansion. In addition, we present a novel and unique dataset for intrinsic evaluation of corpus-based term set expansion algorithms. We show that, over this dataset, our algorithm provides up to 5 mean average precision points over the best baseline.
%R 10.18653/v1/W19-2013
%U https://aclanthology.org/W19-2013/
%U https://doi.org/10.18653/v1/W19-2013
%P 95-101
Markdown (Informal)
[Multi-Context Term Embeddings: the Use Case of Corpus-based Term Set Expansion](https://aclanthology.org/W19-2013/) (Mamou et al., RepEval 2019)
ACL