@inproceedings{mamou-etal-2019-multi,
title = "Multi-Context Term Embeddings: the Use Case of Corpus-based Term Set Expansion",
author = "Mamou, Jonathan and
Pereg, Oren and
Wasserblat, Moshe and
Dagan, Ido",
editor = "Rogers, Anna and
Drozd, Aleksandr and
Rumshisky, Anna and
Goldberg, Yoav",
booktitle = "Proceedings of the 3rd Workshop on Evaluating Vector Space Representations for {NLP}",
month = jun,
year = "2019",
address = "Minneapolis, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-2013/",
doi = "10.18653/v1/W19-2013",
pages = "95--101",
abstract = "In this paper, we present a novel algorithm that combines multi-context term embeddings using a neural classifier and we test this approach on the use case of corpus-based term set expansion. In addition, we present a novel and unique dataset for intrinsic evaluation of corpus-based term set expansion algorithms. We show that, over this dataset, our algorithm provides up to 5 mean average precision points over the best baseline."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mamou-etal-2019-multi">
<titleInfo>
<title>Multi-Context Term Embeddings: the Use Case of Corpus-based Term Set Expansion</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Mamou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oren</namePart>
<namePart type="family">Pereg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Moshe</namePart>
<namePart type="family">Wasserblat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ido</namePart>
<namePart type="family">Dagan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 3rd Workshop on Evaluating Vector Space Representations for NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aleksandr</namePart>
<namePart type="family">Drozd</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rumshisky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we present a novel algorithm that combines multi-context term embeddings using a neural classifier and we test this approach on the use case of corpus-based term set expansion. In addition, we present a novel and unique dataset for intrinsic evaluation of corpus-based term set expansion algorithms. We show that, over this dataset, our algorithm provides up to 5 mean average precision points over the best baseline.</abstract>
<identifier type="citekey">mamou-etal-2019-multi</identifier>
<identifier type="doi">10.18653/v1/W19-2013</identifier>
<location>
<url>https://aclanthology.org/W19-2013/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>95</start>
<end>101</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multi-Context Term Embeddings: the Use Case of Corpus-based Term Set Expansion
%A Mamou, Jonathan
%A Pereg, Oren
%A Wasserblat, Moshe
%A Dagan, Ido
%Y Rogers, Anna
%Y Drozd, Aleksandr
%Y Rumshisky, Anna
%Y Goldberg, Yoav
%S Proceedings of the 3rd Workshop on Evaluating Vector Space Representations for NLP
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, USA
%F mamou-etal-2019-multi
%X In this paper, we present a novel algorithm that combines multi-context term embeddings using a neural classifier and we test this approach on the use case of corpus-based term set expansion. In addition, we present a novel and unique dataset for intrinsic evaluation of corpus-based term set expansion algorithms. We show that, over this dataset, our algorithm provides up to 5 mean average precision points over the best baseline.
%R 10.18653/v1/W19-2013
%U https://aclanthology.org/W19-2013/
%U https://doi.org/10.18653/v1/W19-2013
%P 95-101
Markdown (Informal)
[Multi-Context Term Embeddings: the Use Case of Corpus-based Term Set Expansion](https://aclanthology.org/W19-2013/) (Mamou et al., RepEval 2019)
ACL