@inproceedings{duseja-jhamtani-2019-sociolinguistic,
title = "A Sociolinguistic Study of Online Echo Chambers on {T}witter",
author = "Duseja, Nikita and
Jhamtani, Harsh",
editor = "Volkova, Svitlana and
Jurgens, David and
Hovy, Dirk and
Bamman, David and
Tsur, Oren",
booktitle = "Proceedings of the Third Workshop on Natural Language Processing and Computational Social Science",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-2109",
doi = "10.18653/v1/W19-2109",
pages = "78--83",
abstract = "Online social media platforms such as Facebook and Twitter are increasingly facing criticism for polarization of users. One particular aspect which has caught the attention of various critics is presence of users in echo chambers - a situation wherein users are exposed mostly to the opinions which are in sync with their own views. In this paper, we perform a sociolinguistic study by comparing the tweets of users in echo chambers with the tweets of users not in echo chambers with similar levels of polarity on a broad topic. Specifically, we carry out a comparative analysis of tweet structure, lexical choices, and focus issues, and provide possible explanations for the results.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="duseja-jhamtani-2019-sociolinguistic">
<titleInfo>
<title>A Sociolinguistic Study of Online Echo Chambers on Twitter</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nikita</namePart>
<namePart type="family">Duseja</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Harsh</namePart>
<namePart type="family">Jhamtani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third Workshop on Natural Language Processing and Computational Social Science</title>
</titleInfo>
<name type="personal">
<namePart type="given">Svitlana</namePart>
<namePart type="family">Volkova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Jurgens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dirk</namePart>
<namePart type="family">Hovy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Bamman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oren</namePart>
<namePart type="family">Tsur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Online social media platforms such as Facebook and Twitter are increasingly facing criticism for polarization of users. One particular aspect which has caught the attention of various critics is presence of users in echo chambers - a situation wherein users are exposed mostly to the opinions which are in sync with their own views. In this paper, we perform a sociolinguistic study by comparing the tweets of users in echo chambers with the tweets of users not in echo chambers with similar levels of polarity on a broad topic. Specifically, we carry out a comparative analysis of tweet structure, lexical choices, and focus issues, and provide possible explanations for the results.</abstract>
<identifier type="citekey">duseja-jhamtani-2019-sociolinguistic</identifier>
<identifier type="doi">10.18653/v1/W19-2109</identifier>
<location>
<url>https://aclanthology.org/W19-2109</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>78</start>
<end>83</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Sociolinguistic Study of Online Echo Chambers on Twitter
%A Duseja, Nikita
%A Jhamtani, Harsh
%Y Volkova, Svitlana
%Y Jurgens, David
%Y Hovy, Dirk
%Y Bamman, David
%Y Tsur, Oren
%S Proceedings of the Third Workshop on Natural Language Processing and Computational Social Science
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F duseja-jhamtani-2019-sociolinguistic
%X Online social media platforms such as Facebook and Twitter are increasingly facing criticism for polarization of users. One particular aspect which has caught the attention of various critics is presence of users in echo chambers - a situation wherein users are exposed mostly to the opinions which are in sync with their own views. In this paper, we perform a sociolinguistic study by comparing the tweets of users in echo chambers with the tweets of users not in echo chambers with similar levels of polarity on a broad topic. Specifically, we carry out a comparative analysis of tweet structure, lexical choices, and focus issues, and provide possible explanations for the results.
%R 10.18653/v1/W19-2109
%U https://aclanthology.org/W19-2109
%U https://doi.org/10.18653/v1/W19-2109
%P 78-83
Markdown (Informal)
[A Sociolinguistic Study of Online Echo Chambers on Twitter](https://aclanthology.org/W19-2109) (Duseja & Jhamtani, NLP+CSS 2019)
ACL