@inproceedings{parikh-etal-2019-browsing,
title = "Browsing Health: Information Extraction to Support New Interfaces for Accessing Medical Evidence",
author = "Parikh, Soham and
Conrad, Elizabeth and
Agarwal, Oshin and
Marshall, Iain and
Wallace, Byron and
Nenkova, Ani",
editor = "Nastase, Vivi and
Roth, Benjamin and
Dietz, Laura and
McCallum, Andrew",
booktitle = "Proceedings of the Workshop on Extracting Structured Knowledge from Scientific Publications",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-2606",
doi = "10.18653/v1/W19-2606",
pages = "43--47",
abstract = "Standard paradigms for search do not work well in the medical context. Typical information needs, such as retrieving a full list of medical interventions for a given condition, or finding the reported efficacy of a particular treatment with respect to a specific outcome of interest cannot be straightforwardly posed in typical text-box search. Instead, we propose faceted-search in which a user specifies a condition and then can browse treatments and outcomes that have been evaluated. Choosing from these, they can access randomized control trials (RCTs) describing individual studies. Realizing such a view of the medical evidence requires information extraction techniques to identify the population, interventions, and outcome measures in an RCT. Patients, health practitioners, and biomedical librarians all stand to benefit from such innovation in search of medical evidence. We present an initial prototype of such an interface applied to pre-registered clinical studies. We also discuss pilot studies into the applicability of information extraction methods to allow for similar access to all published trial results.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="parikh-etal-2019-browsing">
<titleInfo>
<title>Browsing Health: Information Extraction to Support New Interfaces for Accessing Medical Evidence</title>
</titleInfo>
<name type="personal">
<namePart type="given">Soham</namePart>
<namePart type="family">Parikh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elizabeth</namePart>
<namePart type="family">Conrad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oshin</namePart>
<namePart type="family">Agarwal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Iain</namePart>
<namePart type="family">Marshall</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Byron</namePart>
<namePart type="family">Wallace</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ani</namePart>
<namePart type="family">Nenkova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Extracting Structured Knowledge from Scientific Publications</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vivi</namePart>
<namePart type="family">Nastase</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="family">Roth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laura</namePart>
<namePart type="family">Dietz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="family">McCallum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Standard paradigms for search do not work well in the medical context. Typical information needs, such as retrieving a full list of medical interventions for a given condition, or finding the reported efficacy of a particular treatment with respect to a specific outcome of interest cannot be straightforwardly posed in typical text-box search. Instead, we propose faceted-search in which a user specifies a condition and then can browse treatments and outcomes that have been evaluated. Choosing from these, they can access randomized control trials (RCTs) describing individual studies. Realizing such a view of the medical evidence requires information extraction techniques to identify the population, interventions, and outcome measures in an RCT. Patients, health practitioners, and biomedical librarians all stand to benefit from such innovation in search of medical evidence. We present an initial prototype of such an interface applied to pre-registered clinical studies. We also discuss pilot studies into the applicability of information extraction methods to allow for similar access to all published trial results.</abstract>
<identifier type="citekey">parikh-etal-2019-browsing</identifier>
<identifier type="doi">10.18653/v1/W19-2606</identifier>
<location>
<url>https://aclanthology.org/W19-2606</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>43</start>
<end>47</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Browsing Health: Information Extraction to Support New Interfaces for Accessing Medical Evidence
%A Parikh, Soham
%A Conrad, Elizabeth
%A Agarwal, Oshin
%A Marshall, Iain
%A Wallace, Byron
%A Nenkova, Ani
%Y Nastase, Vivi
%Y Roth, Benjamin
%Y Dietz, Laura
%Y McCallum, Andrew
%S Proceedings of the Workshop on Extracting Structured Knowledge from Scientific Publications
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F parikh-etal-2019-browsing
%X Standard paradigms for search do not work well in the medical context. Typical information needs, such as retrieving a full list of medical interventions for a given condition, or finding the reported efficacy of a particular treatment with respect to a specific outcome of interest cannot be straightforwardly posed in typical text-box search. Instead, we propose faceted-search in which a user specifies a condition and then can browse treatments and outcomes that have been evaluated. Choosing from these, they can access randomized control trials (RCTs) describing individual studies. Realizing such a view of the medical evidence requires information extraction techniques to identify the population, interventions, and outcome measures in an RCT. Patients, health practitioners, and biomedical librarians all stand to benefit from such innovation in search of medical evidence. We present an initial prototype of such an interface applied to pre-registered clinical studies. We also discuss pilot studies into the applicability of information extraction methods to allow for similar access to all published trial results.
%R 10.18653/v1/W19-2606
%U https://aclanthology.org/W19-2606
%U https://doi.org/10.18653/v1/W19-2606
%P 43-47
Markdown (Informal)
[Browsing Health: Information Extraction to Support New Interfaces for Accessing Medical Evidence](https://aclanthology.org/W19-2606) (Parikh et al., NAACL 2019)
ACL