@inproceedings{ferracane-etal-2019-news,
title = "From News to Medical: Cross-domain Discourse Segmentation",
author = "Ferracane, Elisa and
Page, Titan and
Li, Junyi Jessy and
Erk, Katrin",
editor = "Zeldes, Amir and
Das, Debopam and
Galani, Erick Maziero and
Antonio, Juliano Desiderato and
Iruskieta, Mikel",
booktitle = "Proceedings of the Workshop on Discourse Relation Parsing and Treebanking 2019",
month = jun,
year = "2019",
address = "Minneapolis, MN",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-2704/",
doi = "10.18653/v1/W19-2704",
pages = "22--29",
abstract = "The first step in discourse analysis involves dividing a text into segments. We annotate the first high-quality small-scale medical corpus in English with discourse segments and analyze how well news-trained segmenters perform on this domain. While we expectedly find a drop in performance, the nature of the segmentation errors suggests some problems can be addressed earlier in the pipeline, while others would require expanding the corpus to a trainable size to learn the nuances of the medical domain."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ferracane-etal-2019-news">
<titleInfo>
<title>From News to Medical: Cross-domain Discourse Segmentation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elisa</namePart>
<namePart type="family">Ferracane</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Titan</namePart>
<namePart type="family">Page</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junyi</namePart>
<namePart type="given">Jessy</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Katrin</namePart>
<namePart type="family">Erk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Discourse Relation Parsing and Treebanking 2019</title>
</titleInfo>
<name type="personal">
<namePart type="given">Amir</namePart>
<namePart type="family">Zeldes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debopam</namePart>
<namePart type="family">Das</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Erick</namePart>
<namePart type="given">Maziero</namePart>
<namePart type="family">Galani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juliano</namePart>
<namePart type="given">Desiderato</namePart>
<namePart type="family">Antonio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mikel</namePart>
<namePart type="family">Iruskieta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, MN</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The first step in discourse analysis involves dividing a text into segments. We annotate the first high-quality small-scale medical corpus in English with discourse segments and analyze how well news-trained segmenters perform on this domain. While we expectedly find a drop in performance, the nature of the segmentation errors suggests some problems can be addressed earlier in the pipeline, while others would require expanding the corpus to a trainable size to learn the nuances of the medical domain.</abstract>
<identifier type="citekey">ferracane-etal-2019-news</identifier>
<identifier type="doi">10.18653/v1/W19-2704</identifier>
<location>
<url>https://aclanthology.org/W19-2704/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>22</start>
<end>29</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T From News to Medical: Cross-domain Discourse Segmentation
%A Ferracane, Elisa
%A Page, Titan
%A Li, Junyi Jessy
%A Erk, Katrin
%Y Zeldes, Amir
%Y Das, Debopam
%Y Galani, Erick Maziero
%Y Antonio, Juliano Desiderato
%Y Iruskieta, Mikel
%S Proceedings of the Workshop on Discourse Relation Parsing and Treebanking 2019
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, MN
%F ferracane-etal-2019-news
%X The first step in discourse analysis involves dividing a text into segments. We annotate the first high-quality small-scale medical corpus in English with discourse segments and analyze how well news-trained segmenters perform on this domain. While we expectedly find a drop in performance, the nature of the segmentation errors suggests some problems can be addressed earlier in the pipeline, while others would require expanding the corpus to a trainable size to learn the nuances of the medical domain.
%R 10.18653/v1/W19-2704
%U https://aclanthology.org/W19-2704/
%U https://doi.org/10.18653/v1/W19-2704
%P 22-29
Markdown (Informal)
[From News to Medical: Cross-domain Discourse Segmentation](https://aclanthology.org/W19-2704/) (Ferracane et al., NAACL 2019)
ACL