@inproceedings{shelmanov-etal-2019-towards,
title = "Towards the Data-driven System for Rhetorical Parsing of {R}ussian Texts",
author = "Chistova, Elena and
Kobozeva, Maria and
Pisarevskaya, Dina and
Shelmanov, Artem and
Smirnov, Ivan and
Toldova, Svetlana",
editor = "Zeldes, Amir and
Das, Debopam and
Galani, Erick Maziero and
Antonio, Juliano Desiderato and
Iruskieta, Mikel",
booktitle = "Proceedings of the Workshop on Discourse Relation Parsing and Treebanking 2019",
month = jun,
year = "2019",
address = "Minneapolis, MN",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-2711/",
doi = "10.18653/v1/W19-2711",
pages = "82--87",
abstract = "Results of the first experimental evaluation of machine learning models trained on Ru-RSTreebank {--} first Russian corpus annotated within RST framework {--} are presented. Various lexical, quantitative, morphological, and semantic features were used. In rhetorical relation classification, ensemble of CatBoost model with selected features and a linear SVM model provides the best score (macro F1 = 54.67 {\ensuremath{\pm}} 0.38). We discover that most of the important features for rhetorical relation classification are related to discourse connectives derived from the connectives lexicon for Russian and from other sources."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shelmanov-etal-2019-towards">
<titleInfo>
<title>Towards the Data-driven System for Rhetorical Parsing of Russian Texts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elena</namePart>
<namePart type="family">Chistova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Kobozeva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Pisarevskaya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Artem</namePart>
<namePart type="family">Shelmanov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="family">Smirnov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Svetlana</namePart>
<namePart type="family">Toldova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Discourse Relation Parsing and Treebanking 2019</title>
</titleInfo>
<name type="personal">
<namePart type="given">Amir</namePart>
<namePart type="family">Zeldes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debopam</namePart>
<namePart type="family">Das</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Erick</namePart>
<namePart type="given">Maziero</namePart>
<namePart type="family">Galani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juliano</namePart>
<namePart type="given">Desiderato</namePart>
<namePart type="family">Antonio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mikel</namePart>
<namePart type="family">Iruskieta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, MN</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Results of the first experimental evaluation of machine learning models trained on Ru-RSTreebank – first Russian corpus annotated within RST framework – are presented. Various lexical, quantitative, morphological, and semantic features were used. In rhetorical relation classification, ensemble of CatBoost model with selected features and a linear SVM model provides the best score (macro F1 = 54.67 \ensuremath\pm 0.38). We discover that most of the important features for rhetorical relation classification are related to discourse connectives derived from the connectives lexicon for Russian and from other sources.</abstract>
<identifier type="citekey">shelmanov-etal-2019-towards</identifier>
<identifier type="doi">10.18653/v1/W19-2711</identifier>
<location>
<url>https://aclanthology.org/W19-2711/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>82</start>
<end>87</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards the Data-driven System for Rhetorical Parsing of Russian Texts
%A Chistova, Elena
%A Kobozeva, Maria
%A Pisarevskaya, Dina
%A Shelmanov, Artem
%A Smirnov, Ivan
%A Toldova, Svetlana
%Y Zeldes, Amir
%Y Das, Debopam
%Y Galani, Erick Maziero
%Y Antonio, Juliano Desiderato
%Y Iruskieta, Mikel
%S Proceedings of the Workshop on Discourse Relation Parsing and Treebanking 2019
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, MN
%F shelmanov-etal-2019-towards
%X Results of the first experimental evaluation of machine learning models trained on Ru-RSTreebank – first Russian corpus annotated within RST framework – are presented. Various lexical, quantitative, morphological, and semantic features were used. In rhetorical relation classification, ensemble of CatBoost model with selected features and a linear SVM model provides the best score (macro F1 = 54.67 \ensuremath\pm 0.38). We discover that most of the important features for rhetorical relation classification are related to discourse connectives derived from the connectives lexicon for Russian and from other sources.
%R 10.18653/v1/W19-2711
%U https://aclanthology.org/W19-2711/
%U https://doi.org/10.18653/v1/W19-2711
%P 82-87
Markdown (Informal)
[Towards the Data-driven System for Rhetorical Parsing of Russian Texts](https://aclanthology.org/W19-2711/) (Chistova et al., NAACL 2019)
ACL