@inproceedings{grobol-2019-neural,
title = "Neural Coreference Resolution with Limited Lexical Context and Explicit Mention Detection for Oral {F}rench",
author = {Grobol, Lo{\"\i}c},
editor = "Ogrodniczuk, Maciej and
Pradhan, Sameer and
Grishina, Yulia and
Ng, Vincent",
booktitle = "Proceedings of the Second Workshop on Computational Models of Reference, Anaphora and Coreference",
month = jun,
year = "2019",
address = "Minneapolis, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-2802",
doi = "10.18653/v1/W19-2802",
pages = "8--14",
abstract = "We propose an end-to-end coreference resolution system obtained by adapting neural models that have recently improved the state-of-the-art on the OntoNotes benchmark to make them applicable to other paradigms for this task. We report the performances of our system on ANCOR, a corpus of transcribed oral French, for which it constitutes a new baseline with proper evaluation.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="grobol-2019-neural">
<titleInfo>
<title>Neural Coreference Resolution with Limited Lexical Context and Explicit Mention Detection for Oral French</title>
</titleInfo>
<name type="personal">
<namePart type="given">Loïc</namePart>
<namePart type="family">Grobol</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Computational Models of Reference, Anaphora and Coreference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maciej</namePart>
<namePart type="family">Ogrodniczuk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sameer</namePart>
<namePart type="family">Pradhan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulia</namePart>
<namePart type="family">Grishina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose an end-to-end coreference resolution system obtained by adapting neural models that have recently improved the state-of-the-art on the OntoNotes benchmark to make them applicable to other paradigms for this task. We report the performances of our system on ANCOR, a corpus of transcribed oral French, for which it constitutes a new baseline with proper evaluation.</abstract>
<identifier type="citekey">grobol-2019-neural</identifier>
<identifier type="doi">10.18653/v1/W19-2802</identifier>
<location>
<url>https://aclanthology.org/W19-2802</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>8</start>
<end>14</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural Coreference Resolution with Limited Lexical Context and Explicit Mention Detection for Oral French
%A Grobol, Loïc
%Y Ogrodniczuk, Maciej
%Y Pradhan, Sameer
%Y Grishina, Yulia
%Y Ng, Vincent
%S Proceedings of the Second Workshop on Computational Models of Reference, Anaphora and Coreference
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, USA
%F grobol-2019-neural
%X We propose an end-to-end coreference resolution system obtained by adapting neural models that have recently improved the state-of-the-art on the OntoNotes benchmark to make them applicable to other paradigms for this task. We report the performances of our system on ANCOR, a corpus of transcribed oral French, for which it constitutes a new baseline with proper evaluation.
%R 10.18653/v1/W19-2802
%U https://aclanthology.org/W19-2802
%U https://doi.org/10.18653/v1/W19-2802
%P 8-14
Markdown (Informal)
[Neural Coreference Resolution with Limited Lexical Context and Explicit Mention Detection for Oral French](https://aclanthology.org/W19-2802) (Grobol, CRAC 2019)
ACL