@inproceedings{matero-etal-2019-suicide,
    title = "Suicide Risk Assessment with Multi-level Dual-Context Language and {BERT}",
    author = "Matero, Matthew  and
      Idnani, Akash  and
      Son, Youngseo  and
      Giorgi, Salvatore  and
      Vu, Huy  and
      Zamani, Mohammad  and
      Limbachiya, Parth  and
      Guntuku, Sharath Chandra  and
      Schwartz, H. Andrew",
    editor = "Niederhoffer, Kate  and
      Hollingshead, Kristy  and
      Resnik, Philip  and
      Resnik, Rebecca  and
      Loveys, Kate",
    booktitle = "Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology",
    month = jun,
    year = "2019",
    address = "Minneapolis, Minnesota",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W19-3005/",
    doi = "10.18653/v1/W19-3005",
    pages = "39--44",
    abstract = "Mental health predictive systems typically model language as if from a single context (e.g. Twitter posts, status updates, or forum posts) and often limited to a single level of analysis (e.g. either the message-level or user-level). Here, we bring these pieces together to explore the use of open-vocabulary (BERT embeddings, topics) and theoretical features (emotional expression lexica, personality) for the task of suicide risk assessment on support forums (the CLPsych-2019 Shared Task). We used dual context based approaches (modeling content from suicide forums separate from other content), built over both traditional ML models as well as a novel dual RNN architecture with user-factor adaptation. We find that while affect from the suicide context distinguishes with no-risk from those with ``any-risk'', personality factors from the non-suicide contexts provide distinction of the levels of risk: low, medium, and high risk. Within the shared task, our dual-context approach (listed as SBU-HLAB in the official results) achieved state-of-the-art performance predicting suicide risk using a combination of suicide-context and non-suicide posts (Task B), achieving an F1 score of 0.50 over hidden test set labels."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="matero-etal-2019-suicide">
    <titleInfo>
        <title>Suicide Risk Assessment with Multi-level Dual-Context Language and BERT</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Matthew</namePart>
        <namePart type="family">Matero</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Akash</namePart>
        <namePart type="family">Idnani</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Youngseo</namePart>
        <namePart type="family">Son</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Salvatore</namePart>
        <namePart type="family">Giorgi</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Huy</namePart>
        <namePart type="family">Vu</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Mohammad</namePart>
        <namePart type="family">Zamani</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Parth</namePart>
        <namePart type="family">Limbachiya</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Sharath</namePart>
        <namePart type="given">Chandra</namePart>
        <namePart type="family">Guntuku</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">H</namePart>
        <namePart type="given">Andrew</namePart>
        <namePart type="family">Schwartz</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-06</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Kate</namePart>
            <namePart type="family">Niederhoffer</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Kristy</namePart>
            <namePart type="family">Hollingshead</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Philip</namePart>
            <namePart type="family">Resnik</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Rebecca</namePart>
            <namePart type="family">Resnik</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Kate</namePart>
            <namePart type="family">Loveys</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Minneapolis, Minnesota</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Mental health predictive systems typically model language as if from a single context (e.g. Twitter posts, status updates, or forum posts) and often limited to a single level of analysis (e.g. either the message-level or user-level). Here, we bring these pieces together to explore the use of open-vocabulary (BERT embeddings, topics) and theoretical features (emotional expression lexica, personality) for the task of suicide risk assessment on support forums (the CLPsych-2019 Shared Task). We used dual context based approaches (modeling content from suicide forums separate from other content), built over both traditional ML models as well as a novel dual RNN architecture with user-factor adaptation. We find that while affect from the suicide context distinguishes with no-risk from those with “any-risk”, personality factors from the non-suicide contexts provide distinction of the levels of risk: low, medium, and high risk. Within the shared task, our dual-context approach (listed as SBU-HLAB in the official results) achieved state-of-the-art performance predicting suicide risk using a combination of suicide-context and non-suicide posts (Task B), achieving an F1 score of 0.50 over hidden test set labels.</abstract>
    <identifier type="citekey">matero-etal-2019-suicide</identifier>
    <identifier type="doi">10.18653/v1/W19-3005</identifier>
    <location>
        <url>https://aclanthology.org/W19-3005/</url>
    </location>
    <part>
        <date>2019-06</date>
        <extent unit="page">
            <start>39</start>
            <end>44</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Suicide Risk Assessment with Multi-level Dual-Context Language and BERT
%A Matero, Matthew
%A Idnani, Akash
%A Son, Youngseo
%A Giorgi, Salvatore
%A Vu, Huy
%A Zamani, Mohammad
%A Limbachiya, Parth
%A Guntuku, Sharath Chandra
%A Schwartz, H. Andrew
%Y Niederhoffer, Kate
%Y Hollingshead, Kristy
%Y Resnik, Philip
%Y Resnik, Rebecca
%Y Loveys, Kate
%S Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F matero-etal-2019-suicide
%X Mental health predictive systems typically model language as if from a single context (e.g. Twitter posts, status updates, or forum posts) and often limited to a single level of analysis (e.g. either the message-level or user-level). Here, we bring these pieces together to explore the use of open-vocabulary (BERT embeddings, topics) and theoretical features (emotional expression lexica, personality) for the task of suicide risk assessment on support forums (the CLPsych-2019 Shared Task). We used dual context based approaches (modeling content from suicide forums separate from other content), built over both traditional ML models as well as a novel dual RNN architecture with user-factor adaptation. We find that while affect from the suicide context distinguishes with no-risk from those with “any-risk”, personality factors from the non-suicide contexts provide distinction of the levels of risk: low, medium, and high risk. Within the shared task, our dual-context approach (listed as SBU-HLAB in the official results) achieved state-of-the-art performance predicting suicide risk using a combination of suicide-context and non-suicide posts (Task B), achieving an F1 score of 0.50 over hidden test set labels.
%R 10.18653/v1/W19-3005
%U https://aclanthology.org/W19-3005/
%U https://doi.org/10.18653/v1/W19-3005
%P 39-44
Markdown (Informal)
[Suicide Risk Assessment with Multi-level Dual-Context Language and BERT](https://aclanthology.org/W19-3005/) (Matero et al., CLPsych 2019)
ACL
- Matthew Matero, Akash Idnani, Youngseo Son, Salvatore Giorgi, Huy Vu, Mohammad Zamani, Parth Limbachiya, Sharath Chandra Guntuku, and H. Andrew Schwartz. 2019. Suicide Risk Assessment with Multi-level Dual-Context Language and BERT. In Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology, pages 39–44, Minneapolis, Minnesota. Association for Computational Linguistics.