@inproceedings{rissola-etal-2019-suicide,
title = "Suicide Risk Assessment on Social Media: {USI}-{UPF} at the {CLP}sych 2019 Shared Task",
author = "R{\'\i}ssola, Esteban and
Ram{\'\i}rez-Cifuentes, Diana and
Freire, Ana and
Crestani, Fabio",
editor = "Niederhoffer, Kate and
Hollingshead, Kristy and
Resnik, Philip and
Resnik, Rebecca and
Loveys, Kate",
booktitle = "Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-3021",
doi = "10.18653/v1/W19-3021",
pages = "167--171",
abstract = "This paper describes the participation of the USI-UPF team at the shared task of the 2019 Computational Linguistics and Clinical Psychology Workshop (CLPsych2019). The goal is to assess the degree of suicide risk of social media users given a labelled dataset with their posts. An appropriate suicide risk assessment, with the usage of automated methods, can assist experts on the detection of people at risk and eventually contribute to prevent suicide. We propose a set of machine learning models with features based on lexicons, word embeddings, word level n-grams, and statistics extracted from users{'} posts. The results show that the most effective models for the tasks are obtained integrating lexicon-based features, a selected set of n-grams, and statistical measures.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rissola-etal-2019-suicide">
<titleInfo>
<title>Suicide Risk Assessment on Social Media: USI-UPF at the CLPsych 2019 Shared Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Esteban</namePart>
<namePart type="family">Ríssola</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Diana</namePart>
<namePart type="family">Ramírez-Cifuentes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ana</namePart>
<namePart type="family">Freire</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fabio</namePart>
<namePart type="family">Crestani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kate</namePart>
<namePart type="family">Niederhoffer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kristy</namePart>
<namePart type="family">Hollingshead</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philip</namePart>
<namePart type="family">Resnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Resnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kate</namePart>
<namePart type="family">Loveys</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the participation of the USI-UPF team at the shared task of the 2019 Computational Linguistics and Clinical Psychology Workshop (CLPsych2019). The goal is to assess the degree of suicide risk of social media users given a labelled dataset with their posts. An appropriate suicide risk assessment, with the usage of automated methods, can assist experts on the detection of people at risk and eventually contribute to prevent suicide. We propose a set of machine learning models with features based on lexicons, word embeddings, word level n-grams, and statistics extracted from users’ posts. The results show that the most effective models for the tasks are obtained integrating lexicon-based features, a selected set of n-grams, and statistical measures.</abstract>
<identifier type="citekey">rissola-etal-2019-suicide</identifier>
<identifier type="doi">10.18653/v1/W19-3021</identifier>
<location>
<url>https://aclanthology.org/W19-3021</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>167</start>
<end>171</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Suicide Risk Assessment on Social Media: USI-UPF at the CLPsych 2019 Shared Task
%A Ríssola, Esteban
%A Ramírez-Cifuentes, Diana
%A Freire, Ana
%A Crestani, Fabio
%Y Niederhoffer, Kate
%Y Hollingshead, Kristy
%Y Resnik, Philip
%Y Resnik, Rebecca
%Y Loveys, Kate
%S Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F rissola-etal-2019-suicide
%X This paper describes the participation of the USI-UPF team at the shared task of the 2019 Computational Linguistics and Clinical Psychology Workshop (CLPsych2019). The goal is to assess the degree of suicide risk of social media users given a labelled dataset with their posts. An appropriate suicide risk assessment, with the usage of automated methods, can assist experts on the detection of people at risk and eventually contribute to prevent suicide. We propose a set of machine learning models with features based on lexicons, word embeddings, word level n-grams, and statistics extracted from users’ posts. The results show that the most effective models for the tasks are obtained integrating lexicon-based features, a selected set of n-grams, and statistical measures.
%R 10.18653/v1/W19-3021
%U https://aclanthology.org/W19-3021
%U https://doi.org/10.18653/v1/W19-3021
%P 167-171
Markdown (Informal)
[Suicide Risk Assessment on Social Media: USI-UPF at the CLPsych 2019 Shared Task](https://aclanthology.org/W19-3021) (Ríssola et al., CLPsych 2019)
ACL