@inproceedings{iserman-etal-2019-dictionaries,
title = "Dictionaries and Decision Trees for the 2019 {CLP}sych Shared Task",
author = "Iserman, Micah and
Nalabandian, Taleen and
Ireland, Molly",
editor = "Niederhoffer, Kate and
Hollingshead, Kristy and
Resnik, Philip and
Resnik, Rebecca and
Loveys, Kate",
booktitle = "Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-3025/",
doi = "10.18653/v1/W19-3025",
pages = "188--194",
abstract = "In this summary, we discuss our approach to the CLPsych Shared Task and its initial results. For our predictions in each task, we used a recursive partitioning algorithm (decision trees) to select from our set of features, which were primarily dictionary scores and counts of individual words. We focused primarily on Task A, which aimed to predict suicide risk, as rated by a team of expert clinicians (Shing et al., 2018), based on language used in SuicideWatch posts on Reddit. Category-level findings highlight the potential importance of social and moral language categories. Word-level correlates of risk levels underline the value of fine-grained data-driven approaches, revealing both theory-consistent and potentially novel correlates of suicide risk that may motivate future research."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="iserman-etal-2019-dictionaries">
<titleInfo>
<title>Dictionaries and Decision Trees for the 2019 CLPsych Shared Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Micah</namePart>
<namePart type="family">Iserman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taleen</namePart>
<namePart type="family">Nalabandian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Molly</namePart>
<namePart type="family">Ireland</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kate</namePart>
<namePart type="family">Niederhoffer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kristy</namePart>
<namePart type="family">Hollingshead</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philip</namePart>
<namePart type="family">Resnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Resnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kate</namePart>
<namePart type="family">Loveys</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this summary, we discuss our approach to the CLPsych Shared Task and its initial results. For our predictions in each task, we used a recursive partitioning algorithm (decision trees) to select from our set of features, which were primarily dictionary scores and counts of individual words. We focused primarily on Task A, which aimed to predict suicide risk, as rated by a team of expert clinicians (Shing et al., 2018), based on language used in SuicideWatch posts on Reddit. Category-level findings highlight the potential importance of social and moral language categories. Word-level correlates of risk levels underline the value of fine-grained data-driven approaches, revealing both theory-consistent and potentially novel correlates of suicide risk that may motivate future research.</abstract>
<identifier type="citekey">iserman-etal-2019-dictionaries</identifier>
<identifier type="doi">10.18653/v1/W19-3025</identifier>
<location>
<url>https://aclanthology.org/W19-3025/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>188</start>
<end>194</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Dictionaries and Decision Trees for the 2019 CLPsych Shared Task
%A Iserman, Micah
%A Nalabandian, Taleen
%A Ireland, Molly
%Y Niederhoffer, Kate
%Y Hollingshead, Kristy
%Y Resnik, Philip
%Y Resnik, Rebecca
%Y Loveys, Kate
%S Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F iserman-etal-2019-dictionaries
%X In this summary, we discuss our approach to the CLPsych Shared Task and its initial results. For our predictions in each task, we used a recursive partitioning algorithm (decision trees) to select from our set of features, which were primarily dictionary scores and counts of individual words. We focused primarily on Task A, which aimed to predict suicide risk, as rated by a team of expert clinicians (Shing et al., 2018), based on language used in SuicideWatch posts on Reddit. Category-level findings highlight the potential importance of social and moral language categories. Word-level correlates of risk levels underline the value of fine-grained data-driven approaches, revealing both theory-consistent and potentially novel correlates of suicide risk that may motivate future research.
%R 10.18653/v1/W19-3025
%U https://aclanthology.org/W19-3025/
%U https://doi.org/10.18653/v1/W19-3025
%P 188-194
Markdown (Informal)
[Dictionaries and Decision Trees for the 2019 CLPsych Shared Task](https://aclanthology.org/W19-3025/) (Iserman et al., CLPsych 2019)
ACL