@inproceedings{delahunty-etal-2019-passive,
title = "Passive Diagnosis Incorporating the {PHQ}-4 for Depression and Anxiety",
author = "Delahunty, Fionn and
Johansson, Robert and
Arcan, Mihael",
editor = "Weissenbacher, Davy and
Gonzalez-Hernandez, Graciela",
booktitle = "Proceedings of the Fourth Social Media Mining for Health Applications ({\#}SMM4H) Workshop {\&} Shared Task",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-3205/",
doi = "10.18653/v1/W19-3205",
pages = "40--46",
abstract = "Depression and anxiety are the two most prevalent mental health disorders worldwide, impacting the lives of millions of people each year. In this work, we develop and evaluate a multilabel, multidimensional deep neural network designed to predict PHQ-4 scores based on individuals written text. Our system outperforms random baseline metrics and provides a novel approach to how we can predict psychometric scores from written text. Additionally, we explore how this architecture can be applied to analyse social media data."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="delahunty-etal-2019-passive">
<titleInfo>
<title>Passive Diagnosis Incorporating the PHQ-4 for Depression and Anxiety</title>
</titleInfo>
<name type="personal">
<namePart type="given">Fionn</namePart>
<namePart type="family">Delahunty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robert</namePart>
<namePart type="family">Johansson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mihael</namePart>
<namePart type="family">Arcan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Davy</namePart>
<namePart type="family">Weissenbacher</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Graciela</namePart>
<namePart type="family">Gonzalez-Hernandez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Depression and anxiety are the two most prevalent mental health disorders worldwide, impacting the lives of millions of people each year. In this work, we develop and evaluate a multilabel, multidimensional deep neural network designed to predict PHQ-4 scores based on individuals written text. Our system outperforms random baseline metrics and provides a novel approach to how we can predict psychometric scores from written text. Additionally, we explore how this architecture can be applied to analyse social media data.</abstract>
<identifier type="citekey">delahunty-etal-2019-passive</identifier>
<identifier type="doi">10.18653/v1/W19-3205</identifier>
<location>
<url>https://aclanthology.org/W19-3205/</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>40</start>
<end>46</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Passive Diagnosis Incorporating the PHQ-4 for Depression and Anxiety
%A Delahunty, Fionn
%A Johansson, Robert
%A Arcan, Mihael
%Y Weissenbacher, Davy
%Y Gonzalez-Hernandez, Graciela
%S Proceedings of the Fourth Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F delahunty-etal-2019-passive
%X Depression and anxiety are the two most prevalent mental health disorders worldwide, impacting the lives of millions of people each year. In this work, we develop and evaluate a multilabel, multidimensional deep neural network designed to predict PHQ-4 scores based on individuals written text. Our system outperforms random baseline metrics and provides a novel approach to how we can predict psychometric scores from written text. Additionally, we explore how this architecture can be applied to analyse social media data.
%R 10.18653/v1/W19-3205
%U https://aclanthology.org/W19-3205/
%U https://doi.org/10.18653/v1/W19-3205
%P 40-46
Markdown (Informal)
[Passive Diagnosis Incorporating the PHQ-4 for Depression and Anxiety](https://aclanthology.org/W19-3205/) (Delahunty et al., ACL 2019)
ACL