@inproceedings{schneuwly-etal-2019-correlating,
title = "Correlating {T}witter Language with Community-Level Health Outcomes",
author = "Schneuwly, Arno and
Grubenmann, Ralf and
Rion Logean, S{\'e}verine and
Cieliebak, Mark and
Jaggi, Martin",
editor = "Weissenbacher, Davy and
Gonzalez-Hernandez, Graciela",
booktitle = "Proceedings of the Fourth Social Media Mining for Health Applications ({\#}SMM4H) Workshop {\&} Shared Task",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-3210/",
doi = "10.18653/v1/W19-3210",
pages = "71--78",
abstract = "We study how language on social media is linked to mortal diseases such as atherosclerotic heart disease (AHD), diabetes and various types of cancer. Our proposed model leverages state-of-the-art sentence embeddings, followed by a regression model and clustering, without the need of additional labelled data. It allows to predict community-level medical outcomes from language, and thereby potentially translate these to the individual level. The method is applicable to a wide range of target variables and allows us to discover known and potentially novel correlations of medical outcomes with life-style aspects and other socioeconomic risk factors."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="schneuwly-etal-2019-correlating">
<titleInfo>
<title>Correlating Twitter Language with Community-Level Health Outcomes</title>
</titleInfo>
<name type="personal">
<namePart type="given">Arno</namePart>
<namePart type="family">Schneuwly</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ralf</namePart>
<namePart type="family">Grubenmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Séverine</namePart>
<namePart type="family">Rion Logean</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Cieliebak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martin</namePart>
<namePart type="family">Jaggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Davy</namePart>
<namePart type="family">Weissenbacher</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Graciela</namePart>
<namePart type="family">Gonzalez-Hernandez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We study how language on social media is linked to mortal diseases such as atherosclerotic heart disease (AHD), diabetes and various types of cancer. Our proposed model leverages state-of-the-art sentence embeddings, followed by a regression model and clustering, without the need of additional labelled data. It allows to predict community-level medical outcomes from language, and thereby potentially translate these to the individual level. The method is applicable to a wide range of target variables and allows us to discover known and potentially novel correlations of medical outcomes with life-style aspects and other socioeconomic risk factors.</abstract>
<identifier type="citekey">schneuwly-etal-2019-correlating</identifier>
<identifier type="doi">10.18653/v1/W19-3210</identifier>
<location>
<url>https://aclanthology.org/W19-3210/</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>71</start>
<end>78</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Correlating Twitter Language with Community-Level Health Outcomes
%A Schneuwly, Arno
%A Grubenmann, Ralf
%A Rion Logean, Séverine
%A Cieliebak, Mark
%A Jaggi, Martin
%Y Weissenbacher, Davy
%Y Gonzalez-Hernandez, Graciela
%S Proceedings of the Fourth Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F schneuwly-etal-2019-correlating
%X We study how language on social media is linked to mortal diseases such as atherosclerotic heart disease (AHD), diabetes and various types of cancer. Our proposed model leverages state-of-the-art sentence embeddings, followed by a regression model and clustering, without the need of additional labelled data. It allows to predict community-level medical outcomes from language, and thereby potentially translate these to the individual level. The method is applicable to a wide range of target variables and allows us to discover known and potentially novel correlations of medical outcomes with life-style aspects and other socioeconomic risk factors.
%R 10.18653/v1/W19-3210
%U https://aclanthology.org/W19-3210/
%U https://doi.org/10.18653/v1/W19-3210
%P 71-78
Markdown (Informal)
[Correlating Twitter Language with Community-Level Health Outcomes](https://aclanthology.org/W19-3210/) (Schneuwly et al., ACL 2019)
ACL
- Arno Schneuwly, Ralf Grubenmann, Séverine Rion Logean, Mark Cieliebak, and Martin Jaggi. 2019. Correlating Twitter Language with Community-Level Health Outcomes. In Proceedings of the Fourth Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task, pages 71–78, Florence, Italy. Association for Computational Linguistics.