@inproceedings{pustejovsky-etal-2019-modeling,
title = "Modeling Quantification and Scope in {A}bstract {M}eaning {R}epresentations",
author = "Pustejovsky, James and
Lai, Ken and
Xue, Nianwen",
editor = "Xue, Nianwen and
Croft, William and
Hajic, Jan and
Huang, Chu-Ren and
Oepen, Stephan and
Palmer, Martha and
Pustejovksy, James",
booktitle = "Proceedings of the First International Workshop on Designing Meaning Representations",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-3303",
doi = "10.18653/v1/W19-3303",
pages = "28--33",
abstract = "In this paper, we propose an extension to Abstract Meaning Representations (AMRs) to encode scope information of quantifiers and negation, in a way that overcomes the semantic gaps of the schema while maintaining its cognitive simplicity. Specifically, we address three phenomena not previously part of the AMR specification: quantification, negation (generally), and modality. The resulting representation, which we call {``}Uniform Meaning Representation{''} (UMR), adopts the predicative core of AMR and embeds it under a {``}scope{''} graph when appropriate. UMR representations differ from other treatments of quantification and modal scope phenomena in two ways: (a) they are more transparent; and (b) they specify default scope when possible.{`}",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pustejovsky-etal-2019-modeling">
<titleInfo>
<title>Modeling Quantification and Scope in Abstract Meaning Representations</title>
</titleInfo>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Pustejovsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ken</namePart>
<namePart type="family">Lai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First International Workshop on Designing Meaning Representations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">William</namePart>
<namePart type="family">Croft</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Hajic</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chu-Ren</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stephan</namePart>
<namePart type="family">Oepen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Pustejovksy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we propose an extension to Abstract Meaning Representations (AMRs) to encode scope information of quantifiers and negation, in a way that overcomes the semantic gaps of the schema while maintaining its cognitive simplicity. Specifically, we address three phenomena not previously part of the AMR specification: quantification, negation (generally), and modality. The resulting representation, which we call “Uniform Meaning Representation” (UMR), adopts the predicative core of AMR and embeds it under a “scope” graph when appropriate. UMR representations differ from other treatments of quantification and modal scope phenomena in two ways: (a) they are more transparent; and (b) they specify default scope when possible.‘</abstract>
<identifier type="citekey">pustejovsky-etal-2019-modeling</identifier>
<identifier type="doi">10.18653/v1/W19-3303</identifier>
<location>
<url>https://aclanthology.org/W19-3303</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>28</start>
<end>33</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Modeling Quantification and Scope in Abstract Meaning Representations
%A Pustejovsky, James
%A Lai, Ken
%A Xue, Nianwen
%Y Xue, Nianwen
%Y Croft, William
%Y Hajic, Jan
%Y Huang, Chu-Ren
%Y Oepen, Stephan
%Y Palmer, Martha
%Y Pustejovksy, James
%S Proceedings of the First International Workshop on Designing Meaning Representations
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F pustejovsky-etal-2019-modeling
%X In this paper, we propose an extension to Abstract Meaning Representations (AMRs) to encode scope information of quantifiers and negation, in a way that overcomes the semantic gaps of the schema while maintaining its cognitive simplicity. Specifically, we address three phenomena not previously part of the AMR specification: quantification, negation (generally), and modality. The resulting representation, which we call “Uniform Meaning Representation” (UMR), adopts the predicative core of AMR and embeds it under a “scope” graph when appropriate. UMR representations differ from other treatments of quantification and modal scope phenomena in two ways: (a) they are more transparent; and (b) they specify default scope when possible.‘
%R 10.18653/v1/W19-3303
%U https://aclanthology.org/W19-3303
%U https://doi.org/10.18653/v1/W19-3303
%P 28-33
Markdown (Informal)
[Modeling Quantification and Scope in Abstract Meaning Representations](https://aclanthology.org/W19-3303) (Pustejovsky et al., DMR 2019)
ACL